Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Improved multi-order parameter and multi-component model of polycrystalline solidification

Yang, L., Dong, Z., Wang, L., & Provatas, N. (2022). Improved multi-order parameter and multi-component model of polycrystalline solidification. Journal of Materials Science & Technology, 101, 217-225. doi:10.1016/j.jmst.2021.06.017.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Yang, Laishan1, Autor
Dong, Zhibo1, Autor
Wang, Lei2, Autor
Provatas, Nikolas3, Autor
Affiliations:
1State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China, ou_persistent22              
2Max-Planck-Institut f¨ur Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf, 40237, Germany, ou_persistent22              
3Department of Physics and Centre for the Physics of Materials, McGill University, Montreal, H3A 2T8, Canada, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Aluminum alloys; Binary alloys; Free energy; Grain boundaries; Interpolation; Solidification, Grain boundary migrations; Grain-boundary energy; Interpolation function; Multi-component modeling; Phase field parameters; Polycrystalline solidification; Quantitative simulation; Temperature dependent, Copper alloys
 Zusammenfassung: In this paper, we present an improved multi-order parameter model for multi-component model of polycrystalline solidification. We introduce an interpolation function in the phase field dynamical equation to obtain controllable grain boundary energy at large undercooling. The same interpolation function is also employed in the kinetics coefficient to allow for better control of grain boundary migration. Temperature dependent phase field parameters and noise terms are consistently coupled into the dynamics of a binary system in a manner that allows for quantitative simulations in the thin interface limit. The model is applied to multi-phase solidification in Al-Cu alloy, where a parabolic fitting method is employed to model the free energy of Al-Cu phases and two-phase nucleation is demonstrated in directional solidification. © 2021

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-02-28
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.jmst.2021.06.017
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Materials Science & Technology
  Andere : J. Mater. Sci. Technol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Shenyang, China : Editorial Board of Journal of Materials Science and Technology
Seiten: - Band / Heft: 101 Artikelnummer: - Start- / Endseite: 217 - 225 Identifikator: ISSN: 1005-0302
CoNE: https://pure.mpg.de/cone/journals/resource/954925584235