English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ultrastrong and Ductile Soft Magnetic High-Entropy Alloys via Coherent Ordered Nanoprecipitates

Han, L., Rao, Z., Souza Filho, I. R., Maccari, F., Wei, Y., Wu, G., et al. (2021). Ultrastrong and Ductile Soft Magnetic High-Entropy Alloys via Coherent Ordered Nanoprecipitates. Advanced Materials, 33(37): 2102139. doi:10.1002/adma.202102139.

Item is

Files

show Files
hide Files
:
Ultrastrong and Ductile Soft Magnetic High‐Entropy Alloys via Coherent Ordered Nanoprecipitates.pdf (Publisher version), 5MB
Name:
Ultrastrong and Ductile Soft Magnetic High‐Entropy Alloys via Coherent Ordered Nanoprecipitates.pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
The Authors. Advanced Materials published by Wiley-VCH GmbH.

Locators

show

Creators

show
hide
 Creators:
Han, Liuliu1, 2, Author           
Rao, Ziyuan2, 3, Author           
Souza Filho, Isnaldi Rodrigues4, Author           
Maccari, Fernando5, Author           
Wei, Ye4, 6, Author           
Wu, Ge3, Author           
Ahmadian, Ali7, Author           
Zhou, Xuyang8, Author           
Gutfleisch, Oliver2, 9, Author           
Ponge, Dirk1, Author           
Raabe, Dierk4, Author           
Li, Zhiming10, 11, Author           
Affiliations:
1Mechanism-based Alloy Design, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863383              
2De magnete - Designing Magnetism on the atomic scale, MPG Group, Interdepartmental and Partner Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3260224              
3High-Entropy Alloys, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3010672              
4Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
5Functional Materials, Department of Material Science Technische Universität Darmstadt, 64287, Darmstadt, Germany, ou_persistent22              
6Hydrogen in Energy Materials, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3291873              
7Advanced Transmission Electron Microscopy, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863399              
8Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
9Functional Materials, Materials Science, Technical University of Darmstadt, 64287 Darmstadt, Germany, ou_persistent22              
10School of Materials Science and Engineering, Central South University, Changsha 410083, China, ou_persistent22              
11Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha, 410083 China, ou_persistent22              

Content

show
hide
Free keywords: Aluminum alloys; Cobalt alloys; Domain walls; Entropy; High-entropy alloys; Iron alloys; Magnetic domains; Magnetic properties; Soft magnetic materials; Tantalum alloys, Face-centered cubic; Free state; Functional devices; Nanoprecipitates; Novel concept; Provide guidances; Soft magnetic properties; Soft magnetics, Precipitation (chemical)
 Abstract: The lack of strength and damage tolerance can limit the applications of conventional soft magnetic materials (SMMs), particularly in mechanically loaded functional devices. Therefore, strengthening and toughening of SMMs is critically important. However, conventional strengthening concepts usually significantly deteriorate soft magnetic properties, due to Bloch wall interactions with the defects used for hardening. Here a novel concept to overcome this dilemma is proposed, by developing bulk SMMs with excellent mechanical and attractive soft magnetic properties through coherent and ordered nanoprecipitates (<15 nm) dispersed homogeneously within a face-centered cubic matrix of a non-equiatomic CoFeNiTaAl high-entropy alloy (HEA). Compared to the alloy in precipitate-free state, the alloy variant with a large volume fraction (>42) of nanoprecipitates achieves significantly enhanced strength (≈1526 MPa) at good ductility (≈15), while the coercivity is only marginally increased (<10.7 Oe). The ordered nanoprecipitates and the resulting dynamic microband refinement in the matrix significantly strengthen the HEAs, while full coherency between the nanoprecipitates and the matrix leads at the same time to the desired insignificant pinning of the magnetic domain walls. The findings provide guidance for developing new high-performance materials with an excellent combination of mechanical and soft magnetic properties as needed for the electrification of transport and industry. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

Details

show
hide
Language(s):
 Dates: 2021-09-16
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/adma.202102139
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Materials
  Other : Adv. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 33 (37) Sequence Number: 2102139 Start / End Page: - Identifier: ISSN: 0935-9648
CoNE: https://pure.mpg.de/cone/journals/resource/954925570855