English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects

Oh, H. S., Odbadrakh, K., Ikeda, Y., Mu, S., Körmann, F., Sun, C.-J., et al. (2021). Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects. Acta Materialia, 216: 117135. doi:10.1016/j.actamat.2021.117135.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Element-resolved local lattice distortion in complex concentrated alloys_ An observable signature of electronic effects _ Elsevier Enhanced Reader.pdf (Publisher version), 7MB
Name:
Element-resolved local lattice distortion in complex concentrated alloys_ An observable signature of electronic effects _ Elsevier Enhanced Reader.pdf
Description:
open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.

Locators

show

Creators

show
hide
 Creators:
Oh, Hyun Seok1, 2, Author              
Odbadrakh, Khorgolkhuu3, Author              
Ikeda, Yuji4, 5, Author              
Mu, Sai6, Author              
Körmann, Fritz7, 8, Author              
Sun, Cheng-Jun9, Author              
Ahn, Heh Sang10, Author              
Yoon, Kook Noh11, Author              
Ma, Duancheng12, Author              
Tasan, Cemal Cem1, Author              
Egami, Takeshi6, 13, Author              
Park, Eun Soo2, Author              
Affiliations:
1Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ou_persistent22              
2Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea, ou_persistent22              
3Joint Institute for Computational Sciences, University of Tennessee and Oak Ridge National Laboratory, Oak Ridge, TN, 37996, USA, ou_persistent22              
4Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
5Institute of Materials Science, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, ou_persistent22              
6Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA, ou_persistent22              
7Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              
8Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands, ou_persistent22              
9Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 USA, ou_persistent22              
10Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea, ou_persistent22              
11Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, Republic of Korea, ou_persistent22              
12Department of Materials Science and Engineering, Friedrich-Alexander-Universität, 91054 Erlangen, Germany, ou_persistent22              
13Department of Materials Science and Engineering and Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA, ou_persistent22              

Content

show
hide
Free keywords: Charge transfer; Density functional theory; Extended X ray absorption fine structure spectroscopy; Mechanical properties; Transition metals; X ray absorption, 3d transition metals; Conventional alloys; Electronic effects; Extended X-ray absorption fine structures; Lattice distortions; Local lattice distortion; Macroscopic properties; Orbital transition, Lattice theory
 Abstract: Complex concentrated alloys (CCAs) are of growing interest due to their outstanding mechanical properties that exceed the property limits of conventional alloys. Whereas the superior properties are often attributed to severe lattice distortion, to date it is not clear what controls the lattice distortion and how it affects the mechanical properties of CCAs. In this work, we study the element-resolved local lattice distortion (ELLD) in CCAs of 3d transition-metal elements (3d CCAs) by the extended X-ray absorption fine structure experiment and the density-functional theory calculations. We show that ELLD is primarily dependent upon charge transfer among elements and affects the properties through atomic-level pressure and orbital transition. The ELLD provides a qualitative measure of the effective atomic size for explaining element-specific properties and macroscopic properties. © 2021

Details

show
hide
Language(s):
 Dates: 2021-09-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.actamat.2021.117135
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Acta Materialia
  Abbreviation : Acta Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Kidlington : Elsevier Science
Pages: - Volume / Issue: 216 Sequence Number: 117135 Start / End Page: - Identifier: ISSN: 1359-6454
CoNE: https://pure.mpg.de/cone/journals/resource/954928603100