Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  On the role of pre-existing defects in influencing hardness in nanoscale indentations — Insights from atomistic simulations

Chauniyal, A., Dehm, G., & Janisch, R. (2021). On the role of pre-existing defects in influencing hardness in nanoscale indentations — Insights from atomistic simulations. Journal of the Mechanics and Physics of Solids, 154: 104511. doi:10.1016/j.jmps.2021.104511.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
On the role of pre-existing defects in influencing hardness in nanoscale indentations — Insights from atomistic simulations.pdf (Verlagsversion), 6MB
Name:
On the role of pre-existing defects in influencing hardness in nanoscale indentations — Insights from atomistic simulations.pdf
Beschreibung:
Open Access
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
The Authors. Published by Elsevier Ltd.

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chauniyal, Ashish1, Autor           
Dehm, Gerhard2, Autor           
Janisch, Rebecca3, Autor           
Affiliations:
1Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) Ruhr-Universität Bochum, 44780 Bochum, Germany, ou_persistent22              
2Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863398              
3Mechanical Properties of interfaces Department of Micromechanical and Macroscopic Modelling, ICAMS, Ruhr-Universität Bochum, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Aluminum alloys; Binary alloys; Nanoindentation; Piles; Strain hardening; Titanium alloys, Atomistic simulations; Contact pressures; Defect interactions; Indentation and hardness (A); Indenters; Nanoindentation experiments; Nanoscale indentation; Numerical algorithm (C); Pre-existing defect (B); Strengthening and mechanism (A), Hardness
 Zusammenfassung: Using in-situ nanoindentation experiments it is possible to study the dislocation mechanisms which unfold under an indenter.Large-scale atomistic simulations of the same are possible due to similarities in length scale, provided that defects can be included in the simulation. Yet, nanoindentation simulations have so far been mostly undertaken on defect free samples, while studies with pre-existing defects are few. The latter show that the average hardness is not affected by the presence of pre-existing defects, which justifies the use of ideal crystals in such simulations. However, this observation is counter-intuitive, as indenter-defect interactions should lead to work hardening and manifest themselves in hardness calculations. Our simulations along with a new look at the evolution of dislocations under the indenter, show for the first time, that hardness in atomistic simulations is influenced by pre-existing defects in the sample. Utilizing a face-centred tetragonal TiAl bicrystal with misfit dislocations at the interface, to populate the sample with defects, we correlate the contact-pressure variations to defect-indenter interactions. We show that the measured contact-pressure is affected by the presence and nature of defects under the indenter. Dislocation pile ups lead to intermittent rise in contact pressure, while seamless growth leads to steady convergence. The sensitivity to detect such defect interactions depends upon indenter size while convergence to average hardness is a result of curvature accommodation near the surface. Our findings prove that pre-existing defects have a profound influence on calculated hardness in indentation simulations which also corroborates with experimental observations in the literature. © 2021 Elsevier Ltd

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.jmps.2021.104511
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of the Mechanics and Physics of Solids
  Kurztitel : J. Mech. Phys. Solids
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Pergamon
Seiten: - Band / Heft: 154 Artikelnummer: 104511 Start- / Endseite: - Identifikator: ISSN: 0022-5096
CoNE: https://pure.mpg.de/cone/journals/resource/954925419037