Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys

Shi, P., Li, R., Li, Y., Wen, Y., Zhong, Y., Ren, W., et al. (2021). Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 373(6557), 912-918. doi:10.1126/science.abf6986.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Shi, Peijian1, Autor
Li, Runguang1, Autor
Li, Yi1, Autor
Wen, Yuebo1, Autor
Zhong, Yunbo1, Autor
Ren, Weili1, Autor
Shen, Zhe1, Autor
Zheng, Tianxiang1, Autor
Peng, Jianchao1, Autor
Liang, Xue1, Autor
Hu, Pengfei1, Autor
Min, Na1, Autor
Zhang, Yong1, Autor
Ren, Yang1, Autor
Liaw, Peter K.1, Autor
Raabe, Dierk2, Autor           
Wang, Yan-Dong1, Autor
Affiliations:
1State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, China; Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, China; Laboratory for Microstructures, Shanghai University, Shanghai, China; X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, United States; Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, United States; Department Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany; Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang, China, ou_persistent22              
2Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Inhalt

einblenden:
ausblenden:
Schlagwörter: alloy; detection method; ductility; microstructure; temperature effect
 Zusammenfassung: In human-made malleable materials, microdamage such as cracking usually limits material lifetime. Some biological composites, such as bone, have hierarchical microstructures that tolerate cracks but cannot withstand high elongation. We demonstrate a directionally solidified eutectic high-entropy alloy (EHEA) that successfully reconciles crack tolerance and high elongation. The solidified alloy has a hierarchically organized herringbone structure that enables bionic-inspired hierarchical crack buffering. This effect guides stable, persistent crystallographic nucleation and growth of multiple microcracks in abundant poor-deformability microstructures. Hierarchical buffering by adjacent dynamic strain–hardened features helps the cracks to avoid catastrophic growth and percolation. Our self-buffering herringbone material yields an ultrahigh uniform tensile elongation (~50), three times that of conventional nonbuffering EHEAs, without sacrificing strength. © 2021 American Association for the Advancement of Science. All rights reserved.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-08-20
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1126/science.abf6986
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science
  Kurztitel : Science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Association for the Advancement of Science
Seiten: - Band / Heft: 373 (6557) Artikelnummer: - Start- / Endseite: 912 - 918 Identifikator: ISSN: 0036-8075
CoNE: https://pure.mpg.de/cone/journals/resource/991042748276600_1