English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability

Knossalla, J., Mielby, J., J., Göhl, D., Wang, F. R., Jalalpoor, D., Hopf, A., et al. (2021). Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability. ACS Applied Energy Materials, 4(6), 5840-5847. doi:10.1021/acsaem.1c00643.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability - acsaem.pdf (Publisher version), 5MB
Name:
Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability - acsaem.pdf
Description:
Open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
The Authors. Published by American Chemical Society

Locators

show

Creators

show
hide
 Creators:
Knossalla, Johannes1, Author              
Mielby, J., J.2, Author
Göhl, Daniel3, 4, Author              
Wang, F. R.5, Author
Jalalpoor, Daniel1, Author              
Hopf, A.6, Author
Mayrhofer, Karl Johann Jakob3, 7, Author              
Ledendecker, Marc3, 8, Author              
Schüth, Ferdi1, Author              
Affiliations:
1Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445589              
2Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark, ou_persistent22              
3Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
4Department of Technical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany, ou_persistent22              
5Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K., ou_persistent22              
6Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany, ou_persistent22              
7Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
8Department of Technical Chemistry, Technical University Darmstadt, 64287 Darmstadt, Germany, ou_persistent22              

Content

show
hide
Free keywords: Catalyst supports; Degradation; Graphite; Iron; Iron compounds; Mercury compounds; Organometallics; Scalability; Silica; Spheres, Chemical vapor depositions (CVD); Electrocatalytic process; Electrochemical degradation; Graphite structures; Scalable synthesis; Temperature treatments; Textural properties; Wet chemical synthesis, Chemical vapor deposition
 Abstract: The wet-chemical synthesis of hollow graphitic spheres, a highly defined model catalyst support for electrocatalytic processes, is laborious and not scalable, which hampers potential applications. Here, we present insights into the chemical vapor deposition (CVD) of ferrocene as a simple, scalable method to synthesize hollow graphitic spheres (HGScvd). During the CVD process, iron and carbon are embedded in the pores of a mesoporous silica template. In a subsequent annealing step, iron facilitates the synthesis of highly ordered graphite structures. We found that the applied temperature treatment allows for controlling of the degree of graphitization and the textural properties of HGScvd. Further, we demonstrate that platinum loaded on HGScvd is significantly more stable during electrochemical degradation protocols than catalysts based on commercial high surface area carbons. The established CVD process allows the scalable synthesis of highly defined HGS and therefore removes one obstacle for a broader application. © 2021 The Authors. Published by American Chemical Society.

Details

show
hide
Language(s):
 Dates: 2021-06-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/acsaem.1c00643
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Applied Energy Materials
  Abbreviation : ACS Appl. Energy Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 4 (6) Sequence Number: - Start / End Page: 5840 - 5847 Identifier: ISSN: 02574-0962
CoNE: https://pure.mpg.de/cone/journals/resource/2574-0962