English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface

Colombara, D., Elanzeery, H., Nicoara, N., Sharma, D., Claro, M., Schwarz, T., et al. (2020). Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface. Nature Communications, 11(1): 3634. doi:10.1038/s41467-020-17434-8.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface - s41467-020-17434-8.pdf (Publisher version), 6MB
Name:
Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface - s41467-020-17434-8.pdf
Description:
Open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
The Authors

Locators

show

Creators

show
hide
 Creators:
Colombara, Diego1, 2, 3, Author              
Elanzeery, Hossam2, 4, Author
Nicoara, Nicoleta1, Author
Sharma, Deepanjan1, Author
Claro, Marcel1, Author
Schwarz, Torsten5, Author              
Koprek, Ania6, Author              
Wolter, Max Hilaire2, Author
Melchiorre, Michele2, Author              
Sood, Mohit2, Author
Valle, Nathalie7, Author              
Bondarchuk, Oleksandr1, Author
Babbe, Finn2, 8, Author
Spindler, Conrad2, Author              
Cojocaru-Mirédin, Oana6, 9, Author              
Raabe, Dierk10, Author              
Dale, Phillip J.2, Author              
Sadewasser, Sascha1, Author
Siebentritt, Susanne11, Author              
Affiliations:
1International Iberian Nanotechnology Laboratory, Quantum Materials Science and Technology Department, Avenida Mestre Jose Veiga, Braga, 4715, Portugal, ou_persistent22              
2University of Luxembourg—Physics and Materials Science Research Unit. 41, rue du Brill, L-4422, Belvaux, Luxembourg, ou_persistent22              
3Università degli Studi di Genova, via Dodecaneso 31, Genova, 16146, Italy, ou_persistent22              
4Avancis, Otto-Hahn-Ring 6, 81739, München, Germany, ou_persistent22              
5Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
6Interface Design in Solar Cells, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863387              
7Luxembourg Institute of Science and Technology—Materials Research and Technology Department, 41, rue du Brill, L-4422, Belvaux, Luxembourg, ou_persistent22              
8Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 94720, Berkeley, CA, USA, ou_persistent22              
9I. Physikalisches Institut (IA), RWTH Aachen, 52074 Aachen, Germany, ou_persistent22              
10Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
11University of Luxembourg, Physics and Materials Science Research Unit. 41, rue du Brill, L-4422 Belvaux, Luxembourg, ou_persistent22              

Content

show
hide
Free keywords: chalcogen; chalcogenide; chalcopyrite; chemical compound; copper indium diselenide; nanomaterial; pyrite; unclassified drug, air temperature; anion; chalcopyrite; chemical composition; electronic equipment; instability; photovoltaic system; topology, admittance spectroscopy; anion vacancy; Article; atom probe tomography; chemical composition; chemical instability; chemical modification; chemical parameters; density; electrochemical analysis; energy dispersive X ray spectroscopy; enthalpy; intensity modulated photocurrent spectroscopy; metastability; oxidation; photoelectrochemical analysis; photoluminescence; Raman spectrometry; room temperature; scanning electron microscopy; secondary ion mass spectrometry; solubility; stoichiometry; thermal admittance analysis; thermochemical computation analysis; time resolved surface photovoltage analysis; tomography; X ray photoemission spectroscopy
 Abstract: The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe2 solar cells. © 2020, The Author(s).

Details

show
hide
Language(s): eng - English
 Dates: 2020-07-20
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41467-020-17434-8
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 11 (1) Sequence Number: 3634 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723