Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations

Lu, X., Zhao, J., Yu, C., Li, Z., Kan, Q., Kang, G., et al. (2020). Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations. Journal of the Mechanics and Physics of Solids, 142: 103971. doi:10.1016/j.jmps.2020.103971.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lu, Xiaochong1, Autor           
Zhao, Jianfeng1, Autor
Yu, Chao1, Autor
Li, Zhiming2, 3, Autor           
Kan, Qianhua1, Autor
Kang, Guozheng1, Autor           
Zhang, Xu1, Autor           
Affiliations:
1Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, 610031, China, ou_persistent22              
2High-Entropy Alloys, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3010672              
3School of Materials Science and Engineering, Central South University, Changsha 410083, China, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Chromium compounds; Constitutive models; Crystals; Cyclic loads; Entropy; Fatigue testing; Hardening; High-entropy alloys; Iron compounds; Manganese compounds; Martensitic transformations; Strain rate, 316 L stainless steel; Crystal plasticity models; Engineering applications; Hierarchical structures; Martensitic phase transformations; Microscopic characterization; Service life prediction; Thermodynamic entropy, Stress analysis
 Zusammenfassung: The development of high-entropy alloys (HEAs) comprising multiple principal components is an innovative design strategy for metallic materials from the perspective of thermodynamic entropy. However, despite their potential candidacy for engineering applications, the lack of research on the cyclic loading responses as well as constitutive modeling of the HEAs is a major constraint. Therefore, the present work focuses on the cyclic plasticity of a typical carbon-doped interstitial HEA (iHEA) with nominal composition Fe49.5Mn30Co10Cr10C0.5 (at.). The results of stress-controlled cyclic tests with nonzero mean stress showed that the iHEA exhibits significant cyclic hardening and stress level–dependent ratcheting. Owing to its improved cyclic hardening, the saturated ratcheting strain rate of the iHEA is lower than that of conventional steels such as the 316L stainless steel. Furthermore, microscopic characterizations revealed that the cyclic deformations caused massive martensitic phase transformation and hierarchical structures in the iHEA. The experimental results were used to develop a physical mechanism-based crystal plasticity constitutive model that is capable of describing the cyclic plasticity of the iHEA, which was implemented into a finite element framework. The simulation results showed that the loading stress significantly affected the microstructural evolutions, leading to a stress level–dependent cyclic plasticity. Thus, this investigation provides a fundamental basis for fatigue tests and service life prediction/optimization of the iHEA in the future, which can promote its engineering applications. © 2020 Elsevier Ltd

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.jmps.2020.103971
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of the Mechanics and Physics of Solids
  Kurztitel : J. Mech. Phys. Solids
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Pergamon
Seiten: - Band / Heft: 142 Artikelnummer: 103971 Start- / Endseite: - Identifikator: ISSN: 0022-5096
CoNE: https://pure.mpg.de/cone/journals/resource/954925419037