日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Crystal plasticity finite element analysis of gradient nanostructured TWIP steel

Lu, X., Zhao, J., Wang, Z., Gan, B., Zhao, J., Kang, G., & Zhang, X. (2020). Crystal plasticity finite element analysis of gradient nanostructured TWIP steel. International Journal of Plasticity, 130:. doi:10.1016/j.ijplas.2020.102703.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0009-6BCD-9 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0009-6BCE-8
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Lu, Xiaochong1, 著者
Zhao, Jianfeng1, 著者
Wang, Zhangwei2, 著者           
Gan, Bin3, 著者
Zhao, Junwen4, 著者
Kang, Guozheng1, 著者           
Zhang, Xu1, 著者           
所属:
1Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, 610031, China, ou_persistent22              
2High-Entropy Alloys, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3010672              
3Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing, 100081, China, ou_persistent22              
4School of Materials Science and Engineering & Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China, ou_persistent22              

内容説明

表示:
非表示:
キーワード: Constitutive models; Crystals; Deformation; Ductility; Finite element method; Forecasting; Grain size and shape; Microstructure; Nanostructures; Steel; Strain hardening; Twinning; Yield stress, Crystal plasticity; Crystal plasticity finite element; Crystal plasticity models; Experimental investigations; Strength and ductilities; Surface nanocrystallization; Twinning induced plasticity steels; TWIP steel, Plasticity
 要旨: Although twinning induced plasticity (TWIP) steels have achieved a satisfactory combination of high strength and large plasticity, surface nanocrystallization realizes a further improvement of yield stress in TWIP steels without sacrificing much ductility via gradient microstructures. Experimental investigations have already revealed the excellent mechanical properties and deformation mechanisms of the gradient nanostructured (GNS) TWIP steels. But the prediction and optimization of their mechanical properties are limited due to the lack of a constitutive model. Here we establish a size-dependent crystal plasticity model containing dislocation slipping and deformation twinning, which can describe the tensile response of TWIP steels with different grain sizes. After that, this model is applied to simulate the tensile deformation behavior of the GNS TWIP steel with three kinds of gradient microstructures, namely gradient grain size, dislocation density and twin fraction. The modeling predictions are in agreement with the existing experimental data. Through the analysis of deformation contours and microstructural evolutions, the intrinsic reason for the balance of strength and ductility in the GNS TWIP steel is discussed, and the contribution of each gradient microstructure is quantized. It is found that the surface gradient region containing fine grains, high densities of dislocations and twins improves the yield stress. The homogeneous region in the core helps maintain the strain hardening ability, but the gradient region has lower strain hardening ability, which causes surface notches and slight loss of the ductility. This study offers valuable insights into predicting and further optimizing the mechanical behavior of GNS materials. © 2020 Elsevier Ltd.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2020-07
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1016/j.ijplas.2020.102703
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: International Journal of Plasticity
  省略形 : Int. J. Plast.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: New York : Pergamon
ページ: - 巻号: 130 通巻号: 102703 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 0749-6419
CoNE: https://pure.mpg.de/cone/journals/resource/954925544230