English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells

Schöppe, P., Schönherr, S., Chugh, M., Mirhosseini, H., Jackson, P., Würz, R., et al. (2020). Revealing the origin of the beneficial effect of cesium in highly efficient Cu(In,Ga)Se2 solar cells. Nano Energy, 71: 104622. doi:10.1016/j.nanoen.2020.104622.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Schöppe, Philipp1, Author
Schönherr, Sven1, Author
Chugh, Manjusha2, Author
Mirhosseini, Hossein2, Author
Jackson, Philip3, Author
Würz, Roland4, Author           
Ritzer, Maurizio1, Author
Johannes, Andreas5, Author
Martínez-Criado, Gema5, 6, Author
Wisniewski, Wolfgang7, Author
Schwarz, Torsten8, Author           
Plass, Christian T.1, Author
Hafermann, Martin1, Author
Kühne, Thomas D.2, Author
Schnohr, Claudia S.1, 9, Author
Ronning, Carsten1, Author
Affiliations:
1Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany, ou_persistent22              
2Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, 33098, Paderborn, Germany, ou_persistent22              
3Zentrum für Sonnenenergie und Wasserstoff-Forschung Baden-Württemberg, Meitnerstrasse 1, 70563, Stuttgart, Germany, ou_persistent22              
4Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden Württemberg, Industriestraße 6, 70565 Stuttgart, Germany, ou_persistent22              
5European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France, ou_persistent22              
6Instituto de Ciencia de Materiales de Madrid (CSIC), 28049, Cantoblanco, Madrid, Spain, ou_persistent22              
7Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, Fraunhoferstr. 6, 07743, Jena, Germany, ou_persistent22              
8Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
9Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstraße 5, 04103, Leipzig, Germany, ou_persistent22              

Content

show
hide
Free keywords: Calculations; Cesium; Deposition; Efficiency; Fluorine compounds; Grain boundaries; Semiconductor junctions; Solar absorbers; Thin films, Ab initio calculations; CIGS; Heavy alkali metals; High-resolution techniques; Inhomogeneous distribution; Local compositions; Nano-XRF; Post deposition treatment, Thin film solar cells
 Abstract: The record conversion efficiency of thin-film solar cells based on Cu(In,Ga)Se2 (CIGS) absorbers has exceeded 23. Such a high performance is currently only attainable by the incorporation of heavy alkali metals like Cs into the absorber through an alkali fluoride post-deposition treatment (PDT). As the effect of the incorporated heavy alkali metals is under discussion, we investigated the local composition and microstructure of high efficiency CIGS solar cells via various high-resolution techniques in a combinatory approach. An accumulation of Cs is clearly detected at the p-n junction along with variations in the local CIGS composition, showing the formation of a beneficial secondary phase with a laterally inhomogeneous distribution. Additionally, Cs accumulations were detected at grain boundaries with a random misorientation of the adjacent grains where a reduced Cu concentration and increased In and Se concentrations are detected. No accumulation was found at Σ3 twin boundaries as well as the grain interior. These experimental findings are in excellent agreement with complementary ab-initio calculations, demonstrating that the grain boundaries are passivated by the presence of Cs. Further, it is unlikely that Cs with its large ionic radius is incorporated into the CIGS grains where it would cause detrimental defects. © 2020 Elsevier Ltd

Details

show
hide
Language(s): eng - English
 Dates: 2020-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.nanoen.2020.104622
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nano Energy
  Other : Nano Energy
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 71 Sequence Number: 104622 Start / End Page: - Identifier: ISSN: 2211-2855
CoNE: https://pure.mpg.de/cone/journals/resource/2211-2855