English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers

Saveleva, V. A., Wang, L., Kasian, O., Batuk, M., Hadermann, J., Gallet, J.-J., et al. (2020). Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers. ACS Catalysis, 10(4), 2508-2516. doi:10.1021/acscatal.9b04449.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Saveleva, Viktoriia A.1, Author
Wang, Li2, Author
Kasian, Olga3, 4, Author              
Batuk, Maria5, Author              
Hadermann, Joke5, Author
Gallet, Jean-Jacques6, 7, Author
Bournel, Fabrice6, 7, Author
Alonso-Vante, Nicolás8, Author
Ozouf, Guillaume9, Author
Beauger, Christian9, Author
Mayrhofer, Karl Johann Jakob10, 11, Author              
Cherevko, Serhiy10, Author              
Gago, Aldo Saul2, Author
Friedrich, K. Andreas2, 12, Author
Zafeiratos, Spyridon1, Author
Savinova, Elena R.1, Author
Affiliations:
1Institut de Chimie et Procédés Pour l'Energie, L'Environnement et la Santé, UMR 7515 du CNRS - Université de Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France, ou_persistent22              
2Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, Stuttgart, 70569, Germany, ou_persistent22              
3Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
4Helmholtz Zentrum Berlin, Helmholtz-Institute Erlangen-Nürnberg, 14109 Berlin, Germany, ou_persistent22              
5Department of Physics, EMAT, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium, ou_persistent22              
6Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 4 place Jussieu, Paris, 75005, France, ou_persistent22              
7Synchrotron-Soleil, L'Orme des Merisiers, Saint Aubin - BP48, Gif-sur-Yvette Cedex, 91192, France, ou_persistent22              
8IC2MP - UMR-CNRS 7285, Université de Poitiers, 4, rue Michel Brunet - B27 BP 633 - TSA 51106, Poitiers Cedex, F-86022, France, ou_persistent22              
9MINES ParisTech, PSL University, Centre for Processes Renewable Energy and Energy Systems (PERSEE), CS 10207, Rue Claude Daunesse, Sophia-Antipolis, Cedex, F-06904, France, ou_persistent22              
10Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
11Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany, ou_persistent22              
12Institute of Building Energetics, Thermal Engineering and Energy Storage (IGTE), University of Stuttgart, Pfaffenwaldring 31, Stuttgart, 70569, Germany, ou_persistent22              

Content

show
hide
Free keywords: Aerogels; Antimony compounds; Catalysts; Electrodes; Electrolytic cells; Iridium; Mass spectrometry; Metal nanoparticles; Nanocomposites; Oxygen evolution reaction; Photoelectrons; Photons; Tin oxides; X ray photoelectron spectroscopy, Ambient-pressure x-ray photoelectron spectroscopies; Antimony-doped tin oxide; Electrocatalytic activity and stability; Ir nanoparticles; Membrane electrode assemblies; Operando; Proton exchange membranes; Reaction mechanism, Iridium compounds
 Abstract: The use of high amounts of iridium in industrial proton exchange membrane water electrolyzers (PEMWE) could hinder their widespread use for the decarbonization of society with hydrogen. Nonthermally oxidized Ir nanoparticles supported on antimony-doped tin oxide (SnO2:Sb, ATO) aerogel allow decreasing the use of the precious metal by more than 70 while enhancing the electrocatalytic activity and stability. To date, the origin of these benefits remains unknown. Here, we present clear evidence of the mechanisms that lead to the enhancement of the electrochemical properties of the catalyst. Operando near-ambient pressure X-ray photoelectron spectroscopy on membrane electrode assemblies reveals a low degree of Ir oxidation, attributed to the oxygen spill-over from Ir to SnO2:Sb. Furthermore, the formation of highly unstable Ir(III) species is mitigated, while the decrease of Ir dissolution in Ir/SnO2:Sb is confirmed by inductively coupled plasma mass spectrometry. The mechanisms that lead to the high activity and stability of Ir catalysts supported on SnO2:Sb aerogel for PEMWE are thus unveiled. Copyright © 2020 American Chemical Society.

Details

show
hide
Language(s): eng - English
 Dates: 2020-02-21
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/acscatal.9b04449
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Catalysis
  Abbreviation : ACS Catal.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : ACS
Pages: - Volume / Issue: 10 (4) Sequence Number: - Start / End Page: 2508 - 2516 Identifier: ISSN: 2155-5435
CoNE: https://pure.mpg.de/cone/journals/resource/2155-5435