Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction

Tehranchi, A., Zhou, X., & Curtin, W. A. (2020). A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction. Acta Materialia, 185, 98-109. doi:10.1016/j.actamat.2019.11.062.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Tehranchi, Ali1, Autor           
Zhou, Xiao2, Autor
Curtin, W. A.3, Autor           
Affiliations:
1Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
2Laboratory for Multiscale Mechanics Modeling, EPFL, CH-1015 Lausanne, Switzerland, ou_persistent22              
3Institute of Mechanical Engineering, Êcole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: Crack propagation; Cracks; Density functional theory; Free energy; Grain boundaries; Growth rate; Hydrogen; Hydrogen embrittlement; Kinetic parameters; Kinetic theory; Nickel, Dislocation emissions; Ductile brittle transition; Embrittlement mechanisms; First-principles density functional theory; Hydrogen-enhanced decohesion; Interatomic potential; Nanohydride; Quantitative prediction, Crack tips
 Zusammenfassung: Hydrogen embrittlement (HE) is a ubiquitous and catastrophic mode of fracture in metals. Here, embrittlement is considered as an intrinsic ductile-brittle transition at the crack tip, where H at the crack tip can reduce the stress intensity KIc for cleavage below the value KIe required for ductile dislocation emission and blunting. Specifically, cleavage fracture along (111) planes in Ni occurs due to the formation of just 3 planar layers of H interstitial occupation at a sharp crack tip. During the cleavage process, the sub-surface H in the upper and lower layers can rapidly diffuse to the fracture surface, lowering the net fracture free energy to KIc lt; KIe and enabling brittle fracture. Details of the process are demonstrated using both first-principles density functional theory and a new interatomic potential for Ni-H. Thermodynamic and kinetic models show that the 3 layers of H can form at the crack tip in equilibrium at room temperature with bulk H concentrations and loading rates where H embrittlement in Ni is observed. The kinetic model also predicts the slow crack growth rate in agreement with experiments. The energetics of the mechanism is then shown to apply to cleavage along grain boundaries. All together, these results show that a version of “Hydrogen enhanced decohesion” is the operative embrittlement mechanism in Ni. © 2019 Acta Materialia Inc.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2020-02-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.actamat.2019.11.062
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Acta Materialia
  Kurztitel : Acta Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Kidlington : Elsevier Science
Seiten: - Band / Heft: 185 Artikelnummer: - Start- / Endseite: 98 - 109 Identifikator: ISSN: 1359-6454
CoNE: https://pure.mpg.de/cone/journals/resource/954928603100