English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  An observation approach in evaluation of ozone production to precursor changes during the COVID-19 lockdown

Qi, J., Mo, Z., Yuan, B., Huang, S., Huangfu, Y., Wang, Z., et al. (2021). An observation approach in evaluation of ozone production to precursor changes during the COVID-19 lockdown. Atmospheric Environment, 262: 118618. doi:10.1016/j.atmosenv.2021.118618.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Qi, Jipeng, Author
Mo, Ziwei, Author
Yuan, Bin, Author
Huang, Shan, Author
Huangfu, Yibo, Author
Wang, Zelong, Author
Li, Xiaobing, Author
Yang, Suxia, Author
Wang, Wenjie1, Author           
Zhao, Yiming, Author
Wang, Xuemei, Author
Wang, Weiwen, Author
Liu, Kexuan, Author
Shao, Min, Author
Affiliations:
1Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              

Content

show
hide
Free keywords: -
 Abstract: The increase of surface ozone during the Corona Virus Disease 2019 (COVID-19) lockdown in China has aroused great concern. In this study, we combine 1.5 years of measurements for ozone, volatile organic compounds (VOCs), and nitrogen oxide (NOX) at four sites to investigate the effect of COVID-19 lockdown on surface ozone in Dongguan, an industrial city in southern China. We show that the average concentrations of NOX and VOCs decreased by 70%–77% and 54%–68% during the lockdown compared to pre-lockdown, respectively. Based on the source apportionment of VOCs, the contribution of industrial solvent use reduced significantly (86%–94%) during the lockdown, and climbed back slowly along with the re-opening of the industry after lockdown. A slight increase in mean ozone concentration (3%–14%) was observed during the lockdown. The rise of ozone was the combined effect of substantial increase at night (58%–91%) and small reduction in the daytime (1%–17%). These conflicting observations in ozone response between day and night to emission change call for a more detailed approach to diagnostic ozone production response with precursor changes, rather than directly comparing absolute concentrations. We propose that the ratio of daily Ox (i.e. ozone + NO2) enhancement to solar radiation can provide a diagnostic parameter for ozone production response during the lockdown period. Smaller ratio of daily OX (ozone + NO2) enhancement to solar radiation during the lockdown were observed from the long-term measurements in Dongguan, suggesting significantly weakened photochemistry during the lockdown successfully reduces local ozone production. Our proposed approach can provide an evaluation of ozone production response to precursor changes from restrictions of social activities during COVID-19 epidemic and also other regional air quality abatement measures (e.g. public mega-events) around the globe.

Details

show
hide
Language(s): eng - English
 Dates: 2021-10-01
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Environment
  Abbreviation : Atmospheric Environ.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam [u.a.] : Elsevier
Pages: 8 Volume / Issue: 262 Sequence Number: 118618 Start / End Page: - Identifier: ISSN: 1352-2310
CoNE: https://pure.mpg.de/cone/journals/resource/958480288336