English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Planet formation in stellar binaries: global simulations of planetesimal growth

Silsbee, K., & Rafikov, R. R. (2021). Planet formation in stellar binaries: global simulations of planetesimal growth. Astronomy and Astrophysics, 652: A104. doi:10.1051/0004-6361/202141139.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Planet formation in stellar binaries global simulations of planetesimal growth.pdf (Any fulltext), 3MB
 
File Permalink:
-
Name:
Planet formation in stellar binaries global simulations of planetesimal growth.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Silsbee, Kedron1, Author              
Rafikov, Roman R., Author
Affiliations:
1Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society, ou_1950287              

Content

show
hide
Free keywords: -
 Abstract: Planet formation around one component of a tight, eccentric binary system such as γ Cephei (with semimajor axis around 20 AU) is theoretically challenging because of destructive high-velocity collisions between planetesimals. Despite this fragmentation barrier, planets are known to exist in such (so-called S-type) orbital configurations. Here we present a novel numerical framework for carrying out multi-annulus coagulation-fragmentation calculations of planetesimal growth, which fully accounts for the specifics of planetesimal dynamics in binaries, details of planetesimal collision outcomes, and the radial transport of solids in the disk due to the gas drag-driven inspiral. Our dynamical inputs properly incorporate the gravitational effects of both the eccentric stellar companion and the massive non-axisymmetric protoplanetary disk in which planetesimals reside, as well as gas drag. We identify a set of disk parameters that lead to successful planetesimal growth in systems such as γ Cephei or α Centauri starting from 1 to 10 km size objects. We identify the apsidal alignment of a protoplanetary disk with the binary orbit as one of the critical conditions for successful planetesimal growth: It naturally leads to the emergence of a dynamically quiet location in the disk (as long as the disk eccentricity is of order several percent), where favorable conditions for planetesimal growth exist. Accounting for the gravitational effect of a protoplanetary disk plays a key role in arriving at this conclusion, in agreement with our previous results. These findings lend support to the streaming instability as the mechanism of planetesimal formation. They provide important insights for theories of planet formation around both binary and single stars, as well as for the hydrodynamic simulations of protoplanetary disks in binaries (for which we identify a set of key diagnostics to verify).

Details

show
hide
Language(s):
 Dates: 2021-08-17
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1051/0004-6361/202141139
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: - Volume / Issue: 652 Sequence Number: A104 Start / End Page: - Identifier: ISSN: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1