English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Unveiling the complex pattern of intermolecular interactions responsible for the stability of the DNA duplex

Altun, A., Garcia-Ratés, M., Neese, F., & Bistoni, G. (2021). Unveiling the complex pattern of intermolecular interactions responsible for the stability of the DNA duplex. Chemical Science, 12(38), 12785-12793. doi:10.1039/D1SC03868K.

Item is

Files

show Files
hide Files
:
604_Kopie von d1sc03868k1.xlsx (Supplementary material), 2MB
Name:
604_Kopie von d1sc03868k1.xlsx
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Altun, Ahmet1, Author           
Garcia-Ratés, Miquel2, Author           
Neese, Frank3, Author           
Bistoni, Giovanni1, Author           
Affiliations:
1Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541703              
2Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              
3Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Content

show
hide
Free keywords: -
 Abstract: Herein, we provide new insights into the intermolecular interactions responsible for the intrinsic stability of the duplex structure of a large portion of human B-DNA by using advanced quantum mechanical methods. Our results indicate that (i) the effect of non-neighboring bases on the inter-strand interaction is negligibly small, (ii) London dispersion effects are essential for the stability of the duplex structure, (iii) the largest contribution to the stability of the duplex structure is the Watson–Crick base pairing – consistent with previous computational investigations, (iv) the effect of stacking between adjacent bases is relatively small but still essential for the duplex structure stability and (v) there are no cooperativity effects between intra-strand stacking and inter-strand base pairing interactions. These results are consistent with atomic force microscope measurements and provide the first theoretical validation of nearest neighbor approaches for predicting thermodynamic data of arbitrary DNA sequences.

Details

show
hide
Language(s): eng - English
 Dates: 2021-07-152021-08-262021-09-022021-10-14
 Publication Status: Issued
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1039/D1SC03868K
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemical Science
  Abbreviation : Chem. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, UK : Royal Society of Chemistry
Pages: - Volume / Issue: 12 (38) Sequence Number: - Start / End Page: 12785 - 12793 Identifier: ISSN: 2041-6520
CoNE: https://pure.mpg.de/cone/journals/resource/2041-6520