日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Bayesian decomposition of the Galactic multi-frequency sky using probabilistic autoencoders

Milosevic, S., Frank, P., Leike, R. H., Müller, A., & Ensslin, T. A. (2021). Bayesian decomposition of the Galactic multi-frequency sky using probabilistic autoencoders. Astronomy and Astrophysics, 650:. doi:10.1051/0004-6361/202039435.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0009-596D-A 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0009-596E-9
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
Bayesian decomposition of the Galactic multi-frequency sky using probabilistic autoencoders.pdf (全文テキスト(全般)), 14MB
 
ファイルのパーマリンク:
-
ファイル名:
Bayesian decomposition of the Galactic multi-frequency sky using probabilistic autoencoders.pdf
説明:
-
OA-Status:
閲覧制限:
非公開
MIMEタイプ / チェックサム:
application/pdf
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Milosevic, Sara1, 著者           
Frank, Philipp1, 著者           
Leike, Reimar H.2, 著者           
Müller, Ancla, 著者
Ensslin, Torsten A.1, 著者           
所属:
1Computational Structure Formation, MPI for Astrophysics, Max Planck Society, ou_2205642              
2Physical Cosmology, MPI for Astrophysics, Max Planck Society, ou_2205644              

内容説明

表示:
非表示:
キーワード: -
 要旨: Context. All-sky observations show both Galactic and non-Galactic diffuse emission, for example from interstellar matter or the cosmic microwave background (CMB). The decomposition of the emission into different underlying radiative components is an important signal reconstruction problem.

Aims. We aim to reconstruct radiative all-sky components using spectral data, without incorporating knowledge about physical or spatial correlations.

Methods. We built a self-instructing algorithm based on variational autoencoders following three steps: (1)We stated a forward model describing how the data set was generated from a smaller set of features, (2) we used Bayes’ theorem to derive a posterior probability distribution, and (3) we used variational inference and statistical independence of the features to approximate the posterior. From this, we derived a loss function and optimized it with neural networks. The resulting algorithm contains a quadratic error norm with a self-adaptive variance estimate to minimize the number of hyperparameters. We trained our algorithm on independent pixel vectors, each vector representing the spectral information of the same pixel in 35 Galactic all-sky maps ranging from the radio to the γ-ray regime.

Results. The algorithm calculates a compressed representation of the input data. We find the feature maps derived in the algorithm’s latent space show spatial structures that can be associated with all-sky representations of known astrophysical components. Our resulting feature maps encode (1) the dense interstellar medium (ISM), (2) the hot and dilute regions of the ISM, and (3) the CMB, without being informed about these components a priori.

Conclusions. We conclude that Bayesian signal reconstruction with independent Gaussian latent space statistics is sufficient to reconstruct the dense and the dilute ISM, as well as the CMB, from spectral correlations only. The computational approximation of the posterior can be performed efficiently using variational inference and neural networks, making them a suitable approach to probabilistic data analysis.

資料詳細

表示:
非表示:
言語:
 日付: 2021-06-11
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1051/0004-6361/202039435
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Astronomy and Astrophysics
  その他 : Astron. Astrophys.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Les Ulis Cedex A France : EDP Sciences
ページ: - 巻号: 650 通巻号: A100 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1