English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The in situ formation of molecular and warm ionized gas triggered by hot galactic outflows

Girichidis, P., Naab, T., Walch, S., & Berlok, T. (2021). The in situ formation of molecular and warm ionized gas triggered by hot galactic outflows. Monthly Notices of the Royal Astronomical Society, 505(1), 1083-1104. doi:10.1093/mnras/stab1203.

Item is

Files

show Files
hide Files
:
The in situ formation of molecular and warm ionized gas triggered by hot galactic outflows.pdf (Any fulltext), 9MB
 
File Permalink:
-
Name:
The in situ formation of molecular and warm ionized gas triggered by hot galactic outflows.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Girichidis, Philipp, Author
Naab, Thorsten1, Author           
Walch, Stefanie, Author
Berlok, Thomas, Author
Affiliations:
1Computational Structure Formation, MPI for Astrophysics, Max Planck Society, ou_2205642              

Content

show
hide
Free keywords: -
 Abstract: Molecular outflows contributing to the matter cycle of star-forming galaxies are now observed in small and large systems at low and high redshift. Their physical origin is still unclear. In most theoretical studies, only warm ionized/neutral and hot gas outflowing from the interstellar medium is generated by star formation. We investigate an in situ H2 formation scenario in the outflow using high-resolution simulations, including non-equilibrium chemistry and self-gravity, of turbulent, warm, and atomic clouds with densities 0.1, 0.5, and 1cm−3 exposed to a magnetized hot wind. For cloud densities ≳0.5cm−3⁠, a magnetized wind triggers H2 formation before cloud dispersal. Up to 3 per cent of the initial cloud mass can become molecular on ∼10Myr time-scales. The effect is stronger for winds with perpendicular B-fields and intermediate density clouds (⁠nc∼0.5cm−3⁠). Here, H2 formation can be boosted by up to one order of magnitude compared to isolated cooling clouds independent of self-gravity. Self-gravity preserves the densest clouds well past their ∼15Myr cloud crushing time-scales. This model could provide a plausible in situ origin for the observed molecular gas. All simulations form warm ionized gas, which represents an important observable phase. The amount of warm ionized gas is almost independent of the cloud density but solely depends on the magnetic field configuration in the wind. For low-density clouds (⁠0.1cm−3⁠), up to 60 per cent of the initially atomic cloud mass can become warm and ionized.

Details

show
hide
Language(s): eng - English
 Dates: 2021-05-03
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1093/mnras/stab1203
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Monthly Notices of the Royal Astronomical Society
  Abbreviation : Mon. Not. Roy. Astron. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 505 (1) Sequence Number: - Start / End Page: 1083 - 1104 Identifier: ISSN: 0035-8711
ISSN: 1365-8711