Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging

Schmidt, P., Pongratz, V., Kuester, P., Meier, D., Wuerfel, J., Lukas, C., et al. (2019). Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging. NEUROIMAGE-CLINICAL, 23: 101849. doi:10.1016/j.nicl.2019.101849.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schmidt, Paul, Autor
Pongratz, Viola, Autor
Kuester, Pascal, Autor
Meier, Dominik, Autor
Wuerfel, Jens, Autor
Lukas, Carsten, Autor
Bellenberg, Barbara, Autor
Zipp, Frauke, Autor
Groppa, Sergiu, Autor
Saemann, Philipp G.1, Autor           
Weber, Frank1, Autor           
Gaser, Christian, Autor
Franke, Thomas, Autor
Bussas, Matthias, Autor
Kirschke, Jan, Autor
Zimmer, Claus, Autor
Hemmer, Bernhard, Autor
Muehlau, Mark, Autor
Affiliations:
1Max Planck Institute of Psychiatry, Max Planck Society, ou_1607137              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Longitudinal analysis of white matter lesion changes on serial MRI has become an important parameter to study diseases with white-matter lesions. Here, we build on earlier work on cross-sectional lesion segmentation; we present a fully automatic pipeline for serial analysis of FLAIR-hyperintense white matter lesions. Our algorithm requires three-dimensional gradient echo T1- and FLAIR- weighted images at 3 Tesla as well as available cross-sectional lesion segmentations of both time points. Preprocessing steps include lesion filling and intrasubject registration. For segmentation of lesion changes, initial lesion maps of different time points are fused; herein changes in intensity are analyzed at the voxel level. Significance of lesion change is estimated by comparison with the difference distribution of FLAIR intensities within normal appearing white matter. The method is validated on MRI data of two time points from 40 subjects with multiple sclerosis derived from two different scanners (20 subjects per scanner). Manual segmentation of lesion increases served as gold standard. Across all lesion increases, voxel-wise Dice coefficient (0.7) as well as lesion-wise detection rate (0.8) and false-discovery rate (0.2) indicate good overall performance. Analysis of scans from a repositioning experiment in a single patient with multiple sclerosis did not yield a single false positive lesion. We also introduce the lesion change plot as a descriptive tool for the lesion change of individual patients with regard to both number and volume. An open source implementation of the algorithm is available at http//www.satastical-modeling.de/lst.html.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000485804400040
DOI: 10.1016/j.nicl.2019.101849
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: NEUROIMAGE-CLINICAL
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 23 Artikelnummer: 101849 Start- / Endseite: - Identifikator: ISSN: 2213-1582