Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging

Zhuang, Y., Awel, S., Barty, A., Bean, R., Bielecki, J., Bergemann, M., et al. (2022). Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging. IUCrJ, 9(2), 1-11. doi:10.1107/S2052252521012707.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
it5025.pdf (Verlagsversion), 2MB
Name:
it5025.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
© the Author(s) / IUCrJ

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/2109.06179 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.1107/S2052252521012707 (Verlagsversion)
Beschreibung:
-
OA-Status:
Gold

Urheber

einblenden:
ausblenden:
 Urheber:
Zhuang, Y.1, 2, Autor           
Awel, S.3, Autor
Barty, A.3, Autor
Bean, R.3, Autor
Bielecki, J.3, Autor
Bergemann, M.3, Autor
Daurer, B. J.3, Autor
Ekeberg, T.3, Autor
Estillore, A. D.3, Autor
Fangohr, H.2, 4, 5, 6, Autor           
Giewekemeyer, K.3, Autor
Hunter, M. S.3, Autor
Karnevskiy, M.3, Autor
Kirian, R. A.3, Autor
Kirkwood, H.3, Autor
Kim, Y.3, Autor
Koliyadu, J.3, Autor
Lange, H.3, Autor
Letrun, R.3, Autor
Lübke, J.3, Autor
Mall, A.1, 2, Autor           Michelat, T.3, AutorMorgan, A. J.3, AutorRoth, N.3, AutorSamanta, A. K.3, AutorSato, T.3, AutorShen, Z.3, AutorSikorski, M.3, AutorSchulz, F.3, AutorSpence, J. C. H.3, AutorVagovic, P.3, AutorWollweber, T.1, 2, 7, Autor           Worbs, L.3, AutorXavier, P. L.2, 7, AutorYefanov, O.3, AutorMaia, F. R. N. C.3, AutorHorke, D. A.3, AutorKüpper, J.3, AutorLoh, N. D.3, AutorMancuso, A. P.3, AutorChapman, H. N.3, AutorAyyer, K.1, 2, 7, Autor            mehr..
Affiliations:
1Computational Nanoscale Imaging, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3012829              
2Center for Free-Electron Laser Science, ou_persistent22              
3external, ou_persistent22              
4Computational Science, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3267028              
5European XFEL, ou_persistent22              
6University of Southampton, ou_persistent22              
7The Hamburg Center for Ultrafast Imaging, Universität Hamburg, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: oherent X-ray diffractive imaging (CXDI); single particles; XFELs
 Zusammenfassung: One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand–maximize–compress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-09-152021-11-302022-03-01
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2109.06179
DOI: 10.1107/S2052252521012707
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : We acknowledge the European XFEL in Schenefeld, Germany, for provision of X-ray free-electron laser beamtime on Scientific Instrument SPB/SFX (Single Particles, Clusters and Biomolecules, and Serial Femtosecond Crystallography) and would like to thank the staff for their assistance.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: IUCrJ
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Chester CH1 2HU, England : International Union of Crystallography (IUCr)
Seiten: - Band / Heft: 9 (2) Artikelnummer: - Start- / Endseite: 1 - 11 Identifikator: ISSN: 2052-2525
CoNE: https://pure.mpg.de/cone/journals/resource/2052-2525