Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  UNIQORN: Unified Question Answering over RDF Knowledge Graphs and Natural Language Text

Pramanik, S., Alabi, J., Saha Roy, R., & Weikum, G. (2024). UNIQORN: Unified Question Answering over RDF Knowledge Graphs and Natural Language Text. Journal of Web Semantics, 83: 100833. doi:10.1016/j.websem.2024.100833.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel
Latex : {UNIQORN}: {U}nified Question Answering over {RDF} Knowledge Graphs and Natural Language Text

Dateien

ausblenden: Dateien
:
1-s2.0-S1570826824000192-main.pdf (Verlagsversion), 2MB
Name:
1-s2.0-S1570826824000192-main.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Pramanik, Soumajit1, Autor           
Alabi, Jesujoba1, Autor           
Saha Roy, Rishiraj1, Autor           
Weikum, Gerhard1, Autor           
Affiliations:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Question answering over knowledge graphs and other RDF data has been greatly
advanced, with a number of good systems providing crisp answers for natural
language questions or telegraphic queries. Some of these systems incorporate
textual sources as additional evidence for the answering process, but cannot
compute answers that are present in text alone. Conversely, systems from the IR
and NLP communities have addressed QA over text, but barely utilize semantic
data and knowledge. This paper presents the first QA system that can seamlessly
operate over RDF datasets and text corpora, or both together, in a unified
framework. Our method, called UNIQORN, builds a context graph on the fly, by
retrieving question-relevant triples from the RDF data and/or the text corpus,
where the latter case is handled by automatic information extraction. The
resulting graph is typically rich but highly noisy. UNIQORN copes with this
input by advanced graph algorithms for Group Steiner Trees, that identify the
best answer candidates in the context graph. Experimental results on several
benchmarks of complex questions with multiple entities and relations, show that
UNIQORN, an unsupervised method with only five parameters, produces results
comparable to the state-of-the-art on KGs, text corpora, and heterogeneous
sources. The graph-based methodology provides user-interpretable evidence for
the complete answering process.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2024-09-102024
 Publikationsstatus: Erschienen
 Seiten: 22 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: Pramanik24c
DOI: 10.1016/j.websem.2024.100833
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Journal of Web Semantics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: 83 Artikelnummer: 100833 Start- / Endseite: - Identifikator: ISSN: 1873-7749