Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal

Ippoliti, M., Kechedzhi, K., Moessner, R., Sondhi, S. L., & Khemani, V. (2021). Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal. PRX Quantum, 2(3): 030346. doi:10.1103/PRXQuantum.2.030346.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2007.11602.pdf (Preprint), 3MB
Name:
2007.11602.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ippoliti, Matteo1, Autor
Kechedzhi, Kostyantyn1, Autor
Moessner, Roderich2, Autor           
Sondhi, S. L.1, Autor
Khemani, Vedika1, Autor
Affiliations:
1external, ou_persistent22              
2Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIPKS: Ultracold matter
 Zusammenfassung: Recent progress in the realm of noisy intermediate-scale quantum (NISQ) devices [J. Preskill, Quantum 2, 79 (2018)] represents an exciting opportunity for many-body physics by introducing new laboratory platforms with unprecedented control and measurement capabilities. We explore the implications of NISQ platforms for many-body physics in a practical sense: we ask which physical phenomena, in the domain of quantum statistical mechanics, they may realize more readily than traditional experimental platforms. While a universal quantum computer can simulate any system, the eponymous noise inherent to NISQ devices practically favors certain simulation tasks over others in the near term. As a particularly well-suited target, we identify discrete time crystals (DTCs), novel nonequilibrium states of matter that break time translation symmetry. These can only be realized in the intrinsically out-of-equilibrium setting of periodically driven quantum systems stabilized by disorder-induced many-body localization. While promising precursors of the DTC have been observed across a variety of experimental platforms-ranging from trapped ions to nitrogen-vacancy centers to NMR crystals-none have all the necessary ingredients for realizing a fully fledged incarnation of this phase, and for detecting its signature long-range spatiotemporal order. We show that a new generation of quantum simulators can be programmed to realize the DTC phase and to experimentally detect its dynamical properties, a task requiring extensive capabilities for programmability, initialization, and readout. Specifically, the architecture of Google's Sycamore processor is a remarkably close match for the task at hand. We also discuss the effects of environmental decoherence, and how they can be distinguished from 'internal' decoherence coming from closed-system thermalization dynamics. Already with existing technology and noise levels, we find that DTC spatiotemporal order would be observable over hundreds of periods, with parametric improvements to come as the hardware advances.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-09-202021-09-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000704075200002
DOI: 10.1103/PRXQuantum.2.030346
arXiv: 2007.11602
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PRX Quantum
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: APS
Seiten: - Band / Heft: 2 (3) Artikelnummer: 030346 Start- / Endseite: - Identifikator: Anderer: 2691-3399 (online only)
CoNE: https://pure.mpg.de/cone/journals/resource/journals/resource/2691-3399