English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Interpretable embeddings from molecular simulations using Gaussian mixture variational autoencoders

Bozkurt Varolgunes, Y., Bereau, T., & Rudzinski, J. F. (2020). Interpretable embeddings from molecular simulations using Gaussian mixture variational autoencoders. Machine Learning: Science and Technology, 1(1): 015012. doi:10.1088/2632-2153/ab80b7.

Item is

Files

show Files
hide Files
:
Bozkurt_Varolgüneş_2020_Mach._Learn. _Sci._Technol._1_015012.pdf (Publisher version), 13MB
Name:
Bozkurt_Varolgüneş_2020_Mach._Learn. _Sci._Technol._1_015012.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2020
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Bozkurt Varolgunes, Yasemin1, 2, Author           
Bereau, Tristan1, Author           
Rudzinski, Joseph F.1, Author           
Affiliations:
1Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society, ou_1800287              
2Koc Univ, Dept Elect & Elect Engn, Istanbul, Turkey, ou_persistent22              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 2020-04-27
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1088/2632-2153/ab80b7
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Machine Learning: Science and Technology
  Abbreviation : Mach. Learn.: Sci. Technol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bristol, UK : IOP Publishing
Pages: - Volume / Issue: 1 (1) Sequence Number: 015012 Start / End Page: - Identifier: ISSN: 2632-2153
CoNE: https://pure.mpg.de/cone/journals/resource/2632-2153