English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers

Claassen, M., Xian, L. D., Kennes, D. M., & Rubio, A. (2022). Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers. Nature Communications, 13(1): 4915. doi:10.1038/s41467-022-31604-w.

Item is

Files

show Files
hide Files
:
s41467-022-31604-w.pdf (Publisher version), 2MB
Name:
s41467-022-31604-w.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
© The Author(s)
:
41467_2022_31604_MOESM1_ESM.pdf (Supplementary material), 14MB
Name:
41467_2022_31604_MOESM1_ESM.pdf
Description:
Supplementary information
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://arxiv.org/abs/2110.13370 (Preprint)
Description:
-
OA-Status:
Not specified
Locator:
https://doi.org/10.1038/s41467-022-31604-w (Publisher version)
Description:
-
OA-Status:
Gold

Creators

show
hide
 Creators:
Claassen, M.1, Author
Xian, L. D.2, 3, 4, Author           
Kennes, D. M.3, 4, 5, Author           
Rubio, A.3, 4, 6, Author           
Affiliations:
1Department of Physics and Astronomy, University of Pennsylvania, ou_persistent22              
2Songshan Lake Materials Laboratory, ou_persistent22              
3Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
4Center for Free-Electron Laser Science, ou_persistent22              
5Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, ou_persistent22              
6Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We predict that twisted bilayers of 1T-ZrS2 realize a novel and tunable platform to engineer two-dimensional topological quantum phases dominated by strong spin-orbit interactions. At small twist angles, ZrS2 heterostructures give rise to an emergent and twist-controlled moiré Kagome lattice, combining geometric frustration and strong spin-orbit coupling to give rise to a moiré quantum spin Hall insulator with highly controllable and nearly-dispersionless bands. We devise a generic pseudo-spin theory for group-IV transition metal dichalcogenides that relies on the two-component character of the valence band maximum of the 1T structure at Γ, and study the emergence of a robust quantum anomalous Hall phase as well as possible fractional Chern insulating states from strong Coulomb repulsion at fractional fillings of the topological moiré Kagome bands. Our results establish group-IV transition metal dichalcogenide bilayers as a novel moiré platform to realize strongly-correlated topological phases in a twist-tunable setting.

Details

show
hide
Language(s): eng - English
 Dates: 2021-10-122022-06-132022-08-22
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2110.13370
DOI: 10.1038/s41467-022-31604-w
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : This work is supported by the European Research Council (ERC-2015-AdG-694097), Grupos Consolidados (IT1249-19), and SFB925. [...] We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under RTG 1995, within the Priority Program SPP 2244 “2DMP”, under Germany’s Excellence Strategy - Cluster of Excellence and Advanced Imaging of Matter (AIM) EXC 2056 - 390715994 and RTG 2247.
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 13 (1) Sequence Number: 4915 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723