Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Simulating local deformations in the human cortex due to blood flow-induced changes in mechanical tissue properties: Impact on functional magnetic resonance imaging

Zoraghi, M., Scherf, N., Jäger, C., Sack, I., Hirsch, S., Hetzer, S., et al. (2021). Simulating local deformations in the human cortex due to blood flow-induced changes in mechanical tissue properties: Impact on functional magnetic resonance imaging. Frontiers in Neuroscience, 15: 722366. doi:10.3389/fnins.2021.722366.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Zoraghi_2021.pdf (Verlagsversion), 3MB
Name:
Zoraghi_2021.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zoraghi, Mahsa1, Autor           
Scherf, Nico2, 3, Autor           
Jäger, Carsten1, Autor                 
Sack, Ingolf4, Autor
Hirsch, Sebastian5, 6, Autor
Hetzer, Stefan5, 6, Autor
Weiskopf, Nikolaus1, 7, Autor           
Affiliations:
1Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_2205649              
2Method and Development Group Neural Data Science and Statistical Computing, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_3282987              
3Institute for Medical Informatics and Biometry, University Hospital Carl Gustav Carus, Dresden, Germany, ou_persistent22              
4Department of Radiology, Charité University Medicine Berlin, Germany, ou_persistent22              
5Berlin Center for Advanced Neuroimaging (BCAN), Charité University Medicine Berlin, Germany, ou_persistent22              
6Bernstein Center for Computational Neuroscience, Berlin, Germany, ou_persistent22              
7Felix Bloch Institute for Solid State Physics, University of Leipzig, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: BOLD; VASO; Biophysical modeling; Blood flow; Deformation; fMRI; Simulation; Tissue mechanics
 Zusammenfassung: Investigating human brain tissue is challenging due to the complexity and the manifold interactions between structures across different scales. Increasing evidence suggests that brain function and microstructural features including biomechanical features are related. More importantly, the relationship between tissue mechanics and its influence on brain imaging results remains poorly understood. As an important example, the study of the brain tissue response to blood flow could have important theoretical and experimental consequences for functional magnetic resonance imaging (fMRI) at high spatial resolutions. Computational simulations, using realistic mechanical models can predict and characterize the brain tissue behavior and give us insights into the consequent potential biases or limitations of in vivo, high-resolution fMRI. In this manuscript, we used a two dimensional biomechanical simulation of an exemplary human gyrus to investigate the relationship between mechanical tissue properties and the respective changes induced by focal blood flow changes. The model is based on the changes in the brain’s stiffness and volume due to the vasodilation evoked by neural activity. Modeling an exemplary gyrus from a brain atlas we assessed the influence of different potential mechanisms: (i) a local increase in tissue stiffness (at the level of a single anatomical layer), (ii) an increase in local volume, and (iii) a combination of both effects. Our simulation results showed considerable tissue displacement because of these temporary changes in mechanical properties. We found that the local volume increase causes more deformation and consequently higher displacement of the gyrus. These displacements introduced considerable artifacts in our simulated fMRI measurements. Our results underline the necessity to consider and characterize the tissue displacement which could be responsible for fMRI artifacts.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-09-21
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3389/fnins.2021.722366
Anderer: eCollection 2021
PMID: 34621151
PMC: PMC8490675
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : #276880906; #39052203
Förderprogramm : -
Förderorganisation : German Research Foundation (DFG)
Projektname : -
Grant ID : 616905; 681094
Förderprogramm : -
Förderorganisation : European Union
Projektname : -
Grant ID : 01EW1711A & B
Förderprogramm : -
Förderorganisation : Bundesministerium für Bildung und Forschung (BMBF)

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Neuroscience
  Andere : Front Neurosci
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lausanne, Switzerland : Frontiers Research Foundation
Seiten: - Band / Heft: 15 Artikelnummer: 722366 Start- / Endseite: - Identifikator: ISSN: 1662-4548
ISSN: 1662-453X
CoNE: https://pure.mpg.de/cone/journals/resource/1662-4548