English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Learning Linear Temporal Properties from Noisy Data: A MaxSAT-Based Approach

Gaglione, J.-R., Neider, D., Roy, R., Topcu, U., & Xu, Z. (2021). Learning Linear Temporal Properties from Noisy Data: A MaxSAT-Based Approach. In Z. Hou, & V. Ganesh (Eds.), Automated Technology for Verification and Analysis (pp. 74-90). Berlin: Springer. doi:10.1007/978-3-030-88885-5_6.

Item is

Basic

show hide
Genre: Conference Paper
Latex : Learning Linear Temporal Properties from Noisy Data: {A} {MaxSAT}-Based Approach

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Gaglione, Jean-Raphaël1, Author
Neider, Daniel2, Author           
Roy, Rajarshi2, Author           
Topcu, Ufuk1, Author
Xu, Zhe1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Group R. Majumdar, Max Planck Institute for Software Systems, Max Planck Society, ou_2105292              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 20212021
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Gaglione_ATVA21
DOI: 10.1007/978-3-030-88885-5_6
 Degree: -

Event

show
hide
Title: 19th International Symposium on Automated Technology for Verification and Analysis
Place of Event: Gold Coast, Australia
Start-/End Date: 2021-10-18 - 2021-10-22

Legal Case

show

Project information

show

Source 1

show
hide
Title: Automated Technology for Verification and Analysis
  Abbreviation : ATVA 2021
  Subtitle : 19th International Symposium, ATVA 2021 ; Gold Coast, QLD, Australia, October 18–22, 2021 ; Proceedings
Source Genre: Proceedings
 Creator(s):
Hou, Zhe1, Editor
Ganesh, Vijay1, Editor
Affiliations:
1 External Organizations, ou_persistent22            
Publ. Info: Berlin : Springer
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 74 - 90 Identifier: ISBN: 978-3-030-88884-8

Source 2

show
hide
Title: Lecture Notes in Computer Science
  Abbreviation : LNCS
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 12971 Sequence Number: - Start / End Page: - Identifier: -