Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals

Tehranchi, A., & Curtin, W. A. (2019). The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals. Engineering Fracture Mechanics, 216: 106502. doi:10.1016/j.engfracmech.2019.106502.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tehranchi, Ali1, Autor           
Curtin, W. A.2, Autor           
Affiliations:
1Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
2Institute of Mechanical Engineering, Êcole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Atoms; Edge dislocations; Fracture; Grain boundaries; Hydrogen embrittlement; Lattice theory; Nanotechnology; Probes; Time measurement, Ab initio simulations; Experimental techniques; HEDE; HELP; Molecular simulations; Nanoscale distribution; Semi-empirical interatomic potential; Simulation, Hydrogen
 Zusammenfassung: Atomistic simulations are a powerful complement to experimental probes for understanding the nanoscale processes associated with the effects of hydrogen (H) on plasticity and fracture that are the underlying causes of hydrogen embrittlement (HE). Current experimental techniques provide quantitative measures of the macroscopic effects of H on plastic flow and fracture but are unable to determine the nanoscale distribution of H atoms in equilibrium nor, more importantly, as a function of time. Conversely, atomistic simulations can provide information on the nanoscale distribution of H around important lattice defects (vacancies, dislocations, grain boundaries, cracks) and probe the mechanical behavior of these defects in the presence and absence of H. Thus, in principle, atomistic simulations can test fundamental theories and conjectures that arise in attempting to rationalize experimental features of HE. However, atomistic simulations have a range of limitations that must be well-recognized. Accurate ab initio simulations are limited to small numbers of atoms and cannot capture necessary time evolution. Molecular simulations using semi-empirical interatomic potentials can handle more atoms and longer time scales, but are limited by accuracy of the potentials and time scales that remain far smaller than experimental time scales. The value of atomistic simulations thus lies primarily in creating targeted simulations to assess the energetics of specific configurations or specific mechanisms of deformation or fracture, along with theoretical models to estimate realistic time scales that remain inaccessible in simulations. Because of their limitations, atomistic simulations may not be definitive, but they nonetheless provide considerable insight by supporting or contradicting conjectures and concepts proposed to rationalize experiments. Here, the above issues are discussed in more detail and several examples, mainly from the work of the current authors, and including previously-unpublished studies on the effects of H on the bowout of the edge dislocations in α-Iron and predictions of solute-drag by H in nickel, serve to demonstrate how atomistic simulations can be used to reveal important features of the behavior of H in metals. © 2019 Elsevier Ltd

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.engfracmech.2019.106502
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Engineering Fracture Mechanics
  Andere : Eng. Fract. Mech.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier B.V.
Seiten: - Band / Heft: 216 Artikelnummer: 106502 Start- / Endseite: - Identifikator: ISSN: 0013-7944
CoNE: https://pure.mpg.de/cone/journals/resource/954925397446