Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure

Bishara, H., Lee, S., Brink, T., Ghidelli, M., & Dehm, G. (2021). Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure. ACS Nano, 15(10), 16607-16615. doi:10.1021/acsnano.1c06367.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Understanding Grain Boundary Electrical Resistivity in Cu_ The Effect of Boundary Structure - acsnano.pdf (Verlagsversion), 5MB
Name:
Understanding Grain Boundary Electrical Resistivity in Cu_ The Effect of Boundary Structure - acsnano.pdf
Beschreibung:
Open Access
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
The Authors

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bishara, Hanna1, Autor           
Lee, Subin2, 3, Autor           
Brink, Tobias4, Autor           
Ghidelli, Matteo5, 6, Autor           
Dehm, Gerhard1, Autor           
Affiliations:
1Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863398              
2Advanced Transmission Electron Microscopy, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863399              
3Institute for Applied Materials (IAM), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany, ou_persistent22              
4Atomistic Modelling of Material Interfaces, Project Groups, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3291845              
5Laboratoire des Sciences des Procédés et des Matériaux (LSPM), CNRS, Université Sorbonne Paris Nord, 93430 Villetaneuse, France, ou_persistent22              
6Thin Films and Nanostructured Materials, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_3274276              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Copper; Crystal lattices; Electric conductivity; Molecular dynamics, Atomic arrangement; Boundary structure; Coincidence site lattices; Excess volume; Grain boundary structure; Grain interiors; Grain-boundaries; Lattice type; Systematic study; Tilt grain boundary, Grain boundaries
 Zusammenfassung: Grain boundaries (GBs) in metals usually increase electrical resistivity due to their distinct atomic arrangement compared to the grain interior. While the GB structure has a crucial influence on the electrical properties, its relationship with resistivity is poorly understood. Here, we perform a systematic study on the resistivity-structure relationship in Cu tilt GBs, employing high-resolution in situ electrical measurements coupled with atomic structure analysis of the GBs. Excess volume and energies of selected GBs are calculated using molecular dynamics simulations. We find a consistent relation between the coincidence site lattice (CSL) type of the GB and its resistivity. The most resistive GBs are in the high range of low-angle GBs (14°-18°) with twice the resistivity of high angle tilt GBs, due to the high dislocation density and corresponding strain fields. Regarding the atomistic structure, GB resistivity approximately correlates with the GB excess volume. Moreover, we show that GB curvature increases resistivity by ∼80, while phase variations and defects within the same CSL type do not considerably change it. © 2021 The Authors. Published by American Chemical Society.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-10-26
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acsnano.1c06367
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Nano
  Andere : ACS Nano
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 15 (10) Artikelnummer: - Start- / Endseite: 16607 - 16615 Identifikator: ISSN: 1936-0851
CoNE: https://pure.mpg.de/cone/journals/resource/1936-0851