Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Random force in molecular dynamics with electronic friction

Hertl, N., Martin-Barrios, R., Galparsoro, O., Larrégaray, P., Auerbach, D. J., Schwarzer, D., et al. (2021). Random force in molecular dynamics with electronic friction. The Journal of Physical Chemistry C, 125(26), 14468-14473. doi:10.1021/acs.jpcc.1c03436.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
3349485.pdf (Verlagsversion), 2MB
Name:
3349485.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hertl, N.1, Autor           
Martin-Barrios, R., Autor
Galparsoro, O.1, Autor           
Larrégaray, P., Autor
Auerbach, D. J.2, Autor           
Schwarzer, D.1, Autor           
Wodtke, A. M.2, Autor           
Kandratsenka, A.1, Autor           
Affiliations:
1Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society, ou_578600              
2Department of Dynamics at Surfaces, MPI for biophysical chemistry, Max Planck Society, ou_578600              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Originally conceived to describe thermal diffusion, the Langevin equation includes both a frictional drag and a random force, the latter representing thermal fluctuations first seen as Brownian motion. The random force is crucial for the diffusion problem as it explains why friction does not simply bring the system to a standstill. When using the Langevin equation to describe ballistic motion, the importance of the random force is less obvious and it is often omitted, for example, in theoretical treatments of hot ions and atoms interacting with metals. Here, friction results from electronic nonadiabaticity (electronic friction), and the random force arises from thermal electron–hole pairs. We show the consequences of omitting the random force in the dynamics of H-atom scattering from metals. We compare molecular dynamics simulations based on the Langevin equation to experimentally derived energy loss distributions. Despite the fact that the incidence energy is much larger than the thermal energy and the scattering time is only about 25 fs, the energy loss distribution fails to reproduce the experiment if the random force is neglected. Neglecting the random force is an even more severe approximation than freezing the positions of the metal atoms or modelling the lattice vibrations as a generalized Langevin oscillator. This behavior can be understood by considering analytic solutions to the Ornstein–Uhlenbeck process, where a ballistic particle experiencing friction decelerates under the influence of thermal fluctuations.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-06-272021-07-08
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jpcc.1c03436
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Physical Chemistry C
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 125 (26) Artikelnummer: - Start- / Endseite: 14468 - 14473 Identifikator: -