Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  An anatomical substrate of credit assignment in reinforcement learning

Kornfeld, J., Januszewski, M., Schubert, P. J., Jain, V., Denk, W., & Fee, M. S. (2025). An anatomical substrate of credit assignment in reinforcement learning. bioRxiv: the preprint server for biology. doi:10.1101/2020.02.18.954354.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Kornfeld, Jörgen1, Autor           
Januszewski, M., Autor
Schubert, Philipp J.2, Autor           
Jain, V., Autor
Denk, Winfried2, Autor           
Fee, M. S., Autor
Affiliations:
1Research Group: Circuits of Birdsong / Kornfeld, MPI of Neurobiology, Max Planck Society, ou_3349614              
2Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society, ou_1128546              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Learning turns experience into better decisions. A key problem in learning is credit assignment—knowing how to change parameters, such as synaptic weights deep within a neural network, in order to improve behavioral performance. Artificial intelligence owes its recent bloom largely to the error-backpropagation algorithm1, which estimates the contribution of every synapse to output errors and allows rapid weight adjustment. Biological systems, however, lack an obvious mechanism to backpropagate errors. Here we show, by combining high-throughput volume electron microscopy2 and automated connectomic analysis3–5, that the synaptic architecture of songbird basal ganglia supports local credit assignment using a variant of the node perturbation algorithm proposed in a model of songbird reinforcement learning6, 7. We find that key predictions of the model hold true: first, cortical axons that encode exploratory motor variability terminate predominantly on dendritic shafts of striatal spiny neurons, while cortical axons that encode song timing terminate almost exclusively on spines. Second, synapse pairs that share a presynaptic cortical timing axon and a postsynaptic spiny dendrite are substantially more similar in size than expected, indicating Hebbian plasticity8, 9. Combined with numerical simulations, these findings provide strong evidence for a biologically plausible credit assignment mechanism6.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2025
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1101/2020.02.18.954354
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: bioRxiv : the preprint server for biology
  Kurztitel : bioRxiv
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cold Spring Harbor, NY : Cold Spring Harbor Laboratory
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ZDB: 2766415-6
CoNE: https://pure.mpg.de/cone/journals/resource/2766415-6