日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  An anatomical substrate of credit assignment in reinforcement learning

Kornfeld, J., Januszewski, M., Schubert, P. J., Jain, V., Denk, W., & Fee, M. S. (2024). An anatomical substrate of credit assignment in reinforcement learning. bioRxiv: the preprint server for biology. doi:10.1101/2020.02.18.954354.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0009-764C-E 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000E-15CA-7
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Kornfeld, Jörgen1, 著者           
Januszewski, M., 著者
Schubert, Philipp J.2, 著者           
Jain, V., 著者
Denk, Winfried2, 著者           
Fee, M. S., 著者
所属:
1Research Group: Circuits of Birdsong / Kornfeld, MPI of Neurobiology, Max Planck Society, ou_3349614              
2Department: Electrons-Photons-Neurons / Denk, MPI of Neurobiology, Max Planck Society, ou_1128546              

内容説明

表示:
非表示:
キーワード: -
 要旨: Learning turns experience into better decisions. A key problem in learning is credit assignment—knowing how to change parameters, such as synaptic weights deep within a neural network, in order to improve behavioral performance. Artificial intelligence owes its recent bloom largely to the error-backpropagation algorithm1, which estimates the contribution of every synapse to output errors and allows rapid weight adjustment. Biological systems, however, lack an obvious mechanism to backpropagate errors. Here we show, by combining high-throughput volume electron microscopy2 and automated connectomic analysis3–5, that the synaptic architecture of songbird basal ganglia supports local credit assignment using a variant of the node perturbation algorithm proposed in a model of songbird reinforcement learning6, 7. We find that key predictions of the model hold true: first, cortical axons that encode exploratory motor variability terminate predominantly on dendritic shafts of striatal spiny neurons, while cortical axons that encode song timing terminate almost exclusively on spines. Second, synapse pairs that share a presynaptic cortical timing axon and a postsynaptic spiny dendrite are substantially more similar in size than expected, indicating Hebbian plasticity8, 9. Combined with numerical simulations, these findings provide strong evidence for a biologically plausible credit assignment mechanism6.

資料詳細

表示:
非表示:
言語:
 日付: 2024
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1101/2020.02.18.954354
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: bioRxiv : the preprint server for biology
  省略形 : bioRxiv
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Cold Spring Harbor, NY : Cold Spring Harbor Laboratory
ページ: - 巻号: - 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ZDB: 2766415-6
CoNE: https://pure.mpg.de/cone/journals/resource/2766415-6