日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

 前へ次へ 
  Electrostatic profiling of photosynthetic pigments: implications for directed spectral tuning

Sirohiwal, A., & Pantazis, D. A. (2021). Electrostatic profiling of photosynthetic pigments: implications for directed spectral tuning. Physical Chemistry Chemical Physics, 23(43), 24677-24684. doi:10.1039/D1CP02580E.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0009-7B5D-6 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0009-7B5E-5
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Sirohiwal, Abhishek1, 著者           
Pantazis, Dimitrios A.1, 著者           
所属:
1Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              

内容説明

表示:
非表示:
キーワード: -
 要旨: Photosynthetic pigment–protein complexes harvest solar energy with a high quantum efficiency. Protein scaffolds are known to tune the spectral properties of embedded pigments principally through structured electrostatic environments. Although the physical nature of electrostatic tuning is straightforward, the precise spatial principles of electrostatic preorganization remain poorly explored for different protein matrices and incompletely characterized with respect to the intrinsic properties of different photosynthetic pigments. In this work, we study the electronic structure features associated with the lowest excited state of a series of eight naturally occurring (bacterio)chlorophylls and pheophytins to describe the precise topological differences in electrostatic potentials and hence determine intrinsic differences in the expected mode and impact of electrostatic tuning. The difference electrostatic potentials between the ground and first excited states are used as fingerprints. Both the spatial profile and the propensity for spectral tuning are found to be unique for each pigment, indicating spatially and directionally distinct modes of electrostatic tuning. The results define a specific partitioning of the protein matrix around each pigment as an aid to identify regions with a maximal impact on spectral tuning and have direct implications for dimensionality reduction in protein design and engineering. Thus, a quantum mechanical basis is provided for understanding, predicting, and ultimately designing sequence-modified or pigment-exchanged biological systems, as suggested for selected examples of pigment-reconstituted proteins.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2021-06-082021-10-082021-11-21
 出版の状態: 出版
 ページ: 8
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1039/D1CP02580E
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Physical Chemistry Chemical Physics
  省略形 : Phys. Chem. Chem. Phys.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Cambridge, England : Royal Society of Chemistry
ページ: - 巻号: 23 (43) 通巻号: - 開始・終了ページ: 24677 - 24684 識別子(ISBN, ISSN, DOIなど): ISSN: 1463-9076
CoNE: https://pure.mpg.de/cone/journals/resource/954925272413_1