English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Expected performances of the PROBA-3/ASPIICS solar coronagraph: Simulated data

Shestov, S., Zhukov, A., Inhester, B., Dolla, L., & Mierla, M. (2021). Expected performances of the PROBA-3/ASPIICS solar coronagraph: Simulated data. Astronomy and Astrophysics, 652: A4. doi:10.1051/0004-6361/202140467.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Shestov, S.V., Author
Zhukov, A.N., Author
Inhester, Bernd1, Author              
Dolla, L., Author
Mierla, M., Author
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              

Content

show
hide
Free keywords: Sun: corona / instrumentation: high angular resolution / telescopes / methods: numerical
 Abstract: Context. The Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun (ASPIICS) is a novel externally occulted solar coronagraph that will be launched on board the Project for On-Board Autonomy (PROBA-3) mission in 2023. The external occulter will be placed on the first satellite ∼150 m ahead of the second satellite, which will carry an optical instrument. During 6 hours per orbit, the satellites will fly in a precise formation and will constitute a giant externally occulted coronagraph. The large distance between the external occulter and the primary objective will allow observations of the white-light solar corona starting from extremely low heights of ∼1.1 R⊙. Aims. Developing and testing of algorithms for the scientific image processing requires understanding of all the optics-related and detector-related effects of the coronagraph, development of appropriate physical and numerical models, and preparation of simulated images that include all these effects. At the same time, an analysis of the simulated data gives valuable information about the performance of the instrument, the suitable observation regime, and the amount of telemetry. Methods. We used available physical models of the instrument and implemented them as a software to generate simulated data. We analyzed intermediate and complete simulated images to obtain a better understanding of the performance of ASPIICS, in particular, to predict its photometric sensitivity, effect of noise, suitable exposure times, etc. Results. The proposed models and algorithms are used not only to create the simulated data, but also to form the basis for the scientific processing algorithms to be applied during on-ground ASPIICS data processing. We discuss the possible effect of noise and the uncertainty of the calibration factors on the accuracy of final data, and propose suitable exposure times.

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/202140467
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: - Volume / Issue: 652 Sequence Number: A4 Start / End Page: - Identifier: ISSN: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1