Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Free Energy Sources in Current Sheets Formed in Collisionless Plasma Turbulence

Jain, N., Büchner, J., Comisel, H., & Motschmann, U. (2021). Free Energy Sources in Current Sheets Formed in Collisionless Plasma Turbulence. The Astronomical Journal, 919(2): 103. doi:10.3847/1538-4357/ac106c.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Jain, N., Autor
Büchner, Jörg1, Autor           
Comisel, Horia, Autor
Motschmann, Uwe, Autor
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Space plasmas; Solar wind
 Zusammenfassung: Collisionless dissipation of macroscopic energy into heat is an unsolved problem of space and astrophysical plasmas, e.g., solar wind and Earth's magnetosheath. The most viable process under consideration is the turbulent cascade of macroscopic energy to kinetic scales where collisionless plasma processes dissipate the energy. Space observations and numerical simulations show the formation of kinetic scale current sheets in turbulent plasmas. Instabilities in these current sheets (CS) can provide collisionless dissipation and influence the turbulence. Spatial gradients of physical quantities and non-Maxwellian velocity distribution functions provide the free energy sources for CS plasma instabilities. To determine the free energy sources provided by the spatial gradients of plasma density and electron/ion bulk velocities in CS formed in collisionless turbulent plasmas with an external magnetic field B0, we carried out two-dimensional particle-in-cell-hybrid simulations and interpret the results within the limitations of the simulation model. We found that ion-scale CS in a collisionless turbulent plasma are formed primarily by electron shear flows, i.e., electron bulk velocity inside CS is much larger than ion bulk velocity while the density variations through the CS are relatively small (<10%). The electron bulk velocity and, thus, the current density inside the sheets are directed mainly parallel to B0. The shear in the perpendicular electron and ion bulk velocities generates parallel electron and ion flow vorticities. Inside CS, parallel electron flow vorticity exceeds the parallel ion flow vorticity, changes sign around the CS centers, and peaks near the CS edges. An ion temperature anisotropy develops near CS during the CS formation. It has a positive correlation with the parallel ion and electron flow vorticities. Theoretical estimates support the simulation results.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3847/1538-4357/ac106c
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Astronomical Journal
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol, England : IOP Publishing
Seiten: - Band / Heft: 919 (2) Artikelnummer: 103 Start- / Endseite: - Identifikator: ISSN: 1538-3881
CoNE: https://pure.mpg.de/cone/journals/resource/954922828215_4