hide
Free keywords:
Computer Science, Computer Vision and Pattern Recognition, cs.CV
Abstract:
Most learning methods for 3D data (point clouds, meshes) suffer significant
performance drops when the data is not carefully aligned to a canonical
orientation. Aligning real world 3D data collected from different sources is
non-trivial and requires manual intervention. In this paper, we propose the
Adjoint Rigid Transform (ART) Network, a neural module which can be integrated
with a variety of 3D networks to significantly boost their performance. ART
learns to rotate input shapes to a learned canonical orientation, which is
crucial for a lot of tasks such as shape reconstruction, interpolation,
non-rigid registration, and latent disentanglement. ART achieves this with
self-supervision and a rotation equivariance constraint on predicted rotations.
The remarkable result is that with only self-supervision, ART facilitates
learning a unique canonical orientation for both rigid and nonrigid shapes,
which leads to a notable boost in performance of aforementioned tasks. We will
release our code and pre-trained models for further research.