hide
Free keywords:
visual system
vision
retina
optomotor
optokinetic
behavior
retinal
ganglion cell
tectum
superior colliculus
zebrafish
Danio rerio
transgenic
GFP
sonic hedgehog
laser ablation
non-fourier motion
eye-movements
2nd-order motion
optokinetic
nystagmus
superior colliculus
retinotectal projection
torus
longitudinalis
perception
neurons
pretectum
Neurosciences & Neurology
Abstract:
The optic tectum is the largest visual center in most vertebrates and the main target for retinal ganglion cells (RGCs) conveying visual information from the eye to the brain. The retinotectal projection has served as an important model in many areas of developmental neuroscience. However, knowledge of the function of the tectum is limited. We began to address this issue using laser ablations and subsequent behavioral testing in zebrafish. We used a transgenic zebrafish line that expresses green-fluorescent protein in RGCs projecting to the tectum. By aiming a laser beam at the labeled retinal fibers demarcating the tectal neuropil, the larval tectum could be selectively destroyed. We tested whether tectum-ablated zebrafish larvae, when presented with large-field movements in their surroundings, displayed optokinetic responses (OKR) or optomotor responses (OMR), two distinct visuomotor behaviors that compensate for self-motion. Neither OKR nor OMR were found to be dependent on intact retinotectal connections. Also, visual acuity remained unaffected. Tectum ablation, however, slowed down the OKR by reducing the frequency of saccades but left tracking velocity, gain, and saccade amplitude unaffected. Removal of the tectum had no effect on the processing of second-order motion, to which zebrafish show both OKR and OMR, suggesting that the tectum is not an integral part of the circuit that extracts higher-order cues in the motion pathway.