English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Conjugation spaces are cohomologically pure

Pitsch, W., Ricka, N., & Scherer, J. (2021). Conjugation spaces are cohomologically pure. Proceedings of the London Mathematical Society, 123(3), 313-344. doi:10.1112/plms.12399.

Item is

Files

show Files
hide Files
:
1908.03088.pdf (Preprint), 451KB
 
File Permalink:
-
Name:
1908.03088.pdf
Description:
File downloaded from arXiv at 2021-11-30 14:31
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Pitsch-Ricka-Scherer_Conjugation spaces are cohomologically pure_2021.pdf (Publisher version), 519KB
 
File Permalink:
-
Name:
Pitsch-Ricka-Scherer_Conjugation spaces are cohomologically pure_2021.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1112/plms.12399 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Pitsch, Wolfgang, Author
Ricka, Nicolas, Author
Scherer, Jérôme1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Topology
 Abstract: Conjugation spaces are equipped with an involution such that the fixed points
have the same mod 2 cohomology (as a graded vector space, a ring, and even an
unstable algebra) but with all degrees divided by 2, generalizing the classical
examples of complex projective spaces under complex conjugation. Using tools
from stable equivariant homotopy theory we provide a characterization of
conjugation spaces in terms of purity. This conceptual viewpoint, compared to
the more computational original definition, allows us to recover all known
structural properties of conjugation spaces.

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Issued
 Pages: 39 pages. This version corrected some misprints and a few misleading proofs
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1908.03088
DOI: 10.1112/plms.12399
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the London Mathematical Society
  Abbreviation : Proc. London Math. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Wiley
Pages: - Volume / Issue: 123 (3) Sequence Number: - Start / End Page: 313 - 344 Identifier: -