Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Multiplicative functions that are close to their mean

Klurman, O., Mangerel, A. P., Pohoata, C., & Teräväinen, J. (2021). Multiplicative functions that are close to their mean. Transactions of the American Mathematical Society, 374(11), 7967-7990. doi:10.1090/tran/8427.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1911.06265.pdf (Preprint), 477KB
 
Datei-Permalink:
-
Name:
arXiv:1911.06265.pdf
Beschreibung:
File downloaded from arXiv at 2021-12-02 14:00
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Klurman-Mangerel-Pohoata-Teravainen_Multiplicative functions that are close to their mean_2021.pdf (Verlagsversion), 329KB
 
Datei-Permalink:
-
Name:
Klurman-Mangerel-Pohoata-Teravainen_Multiplicative functions that are close to their mean_2021.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Mathematics, MBMT; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1090/tran/8427 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.48550/arXiv.1911.06265 (Preprint)
Beschreibung:
-
OA-Status:
Grün

Urheber

einblenden:
ausblenden:
 Urheber:
Klurman, Oleksiy1, Autor           
Mangerel, Alexander P., Autor
Pohoata, Cosmin, Autor
Teräväinen, Joni, Autor
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Mathematics, Number Theory, math.NT,Mathematics, Combinatorics
 Zusammenfassung: We introduce a simple sieve-theoretic approach to studying partial sums of
multiplicative functions which are close to their mean value. This enables us
to obtain various new results as well as strengthen existing results with new
proofs.
As a first application, we show that for a completely multiplicative function
$f : \mathbb{N} \to \{-1,1\},$ \begin{align*}
\limsup_{x\to\infty}\Big|\sum_{n\leq x}\mu^2(n)f(n)\Big|=\infty. \end{align*}
This confirms a conjecture of Aymone concerning the discrepancy of square-free
supported multiplicative functions.
Secondly, we show that a completely multiplicative function $f : \mathbb{N}
\to \mathbb{C}$ satisfies \begin{align*} \sum_{n\leq x}f(n)=cx+O(1)
\end{align*} with $c\neq 0$ if and only if $f(p)=1$ for all but finitely many
primes and $|f(p)|<1$ for the remaining primes. This answers a question of
Ruzsa.
For the case $c = 0,$ we show, under the additional hypothesis $$\sum_{p
}\frac{1-|f(p)|}{p} < \infty,$$ that $f$ has bounded partial sums if and only
if $f(p) = \chi(p)p^{it}$ for some non-principal Dirichlet character $\chi$
modulo $q$ and $t \in \mathbb{R}$ except on a finite set of primes that
contains the primes dividing $q$, wherein $|f(p)| < 1.$ This provides progress
on another problem of Ruzsa and gives a new and simpler proof of a stronger
form of Chudakov's conjecture.
Along the way we obtain quantitative bounds for the discrepancy of the
generalized characters improving on the previous work of Borwein, Choi and
Coons.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021
 Publikationsstatus: Erschienen
 Seiten: 24
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 1911.06265
DOI: 10.1090/tran/8427
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Transactions of the American Mathematical Society
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: American Mathematical Society
Seiten: - Band / Heft: 374 (11) Artikelnummer: - Start- / Endseite: 7967 - 7990 Identifikator: -