English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers

Elstner, M., Olszewski, K., Prokisch, H., Klopstock, T., & Murgia, M. (2021). Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers. International Journal of Molecular Sciences, 22(20): 11080. doi:10.3390/ijms222011080.

Item is

Files

show Files
hide Files
:
ijms-22-11080-v2.pdf (Publisher version), 10MB
Name:
ijms-22-11080-v2.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
Open Access
:
ijms-22-11080-s001.zip (Supplementary material), 130KB
Name:
ijms-22-11080-s001.zip
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/zip / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Elstner, Matthias1, Author
Olszewski, Konrad1, Author
Prokisch, Holger1, Author
Klopstock, Thomas1, Author
Murgia, Marta2, Author           
Affiliations:
1external, ou_persistent22              
2Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              

Content

show
hide
Free keywords: DELETION MUTATIONS; OXIDATIVE DAMAGE; PROTEOMICS; GENETICSBiochemistry & Molecular Biology; Chemistry; skeletal muscle; mtDNA deletions; transcriptomics; proteomics; myopathy; disease models;
 Abstract: Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.</p>

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Published online
 Pages: 15
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000716266100001
DOI: 10.3390/ijms222011080
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Journal of Molecular Sciences
  Abbreviation : Int. J. Mol. Sci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Basel, Switzerland : MDPI AG
Pages: - Volume / Issue: 22 (20) Sequence Number: 11080 Start / End Page: - Identifier: ISSN: 1422-0067
CoNE: https://pure.mpg.de/cone/journals/resource/1422-0067