English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Giant anomalous Nernst signal in the antiferromagnet YbMnBi2

Pan, Y., Le, C., He, B., Watzman, S. J., Yao, M., Gooth, J., et al. (2022). Giant anomalous Nernst signal in the antiferromagnet YbMnBi2. Nature Materials, 21, 203-209. doi:10.1038/s41563-021-01149-2.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Pan, Yu1, Author           
Le, Congcong1, Author           
He, Bin1, Author           
Watzman, Sarah J.1, Author           
Yao, Mengyu1, Author           
Gooth, Johannes2, Author           
Heremans, Joseph P.3, Author
Sun, Yan1, Author           
Felser, Claudia4, Author           
Affiliations:
1Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863425              
2Nanostructured Quantum Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_3018212              
3External Organizations, ou_persistent22              
4Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              

Content

show
hide
Free keywords: -
 Abstract: A large anomalous Nernst effect (ANE) is crucial for thermoelectric energy conversion applications because the associated unique transverse geometry facilitates module fabrication. Topological ferromagnets with large Berry curvatures show large AN Es; however, they face drawbacks such as strong magnetic disturbances and low mobility due to high magnetization. Herein, we demonstrate that YbMnBi2, a canted antiferromagnet, has a large ANE conductivity of similar to 10 A m(-1) K-1 that surpasses large values observed in other ferromagnets (3-5 A m(-1) K-1). The canted spin structure of Mn guarantees a non-zero Berry curvature, but generates only a weak magnetization three orders of magnitude lower than that of general ferromagnets. The heavy Bi with a large spin-orbit coupling enables a large ANE and low thermal conductivity, whereas its highly dispersive P-x/y orbitals ensure low resistivity. The high anomalous transverse thermoelectric performance and extremely small magnetization make YbMnBi2 an excellent candidate for transverse thermoelectrics.

Details

show
hide
Language(s): eng - English
 Dates: 2022-02-222022-02-22
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Materials
  Abbreviation : Nat. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Pub. Group
Pages: - Volume / Issue: 21 Sequence Number: - Start / End Page: 203 - 209 Identifier: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000