English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Influence of methylene fluorination and chain length on the hydration shell structure and thermodynamics of linear diols

Robalo, J. R., Mendes de Oliveira, D., Ben-Amotz, D., & Vila Verde, A. (2021). Influence of methylene fluorination and chain length on the hydration shell structure and thermodynamics of linear diols. The Journal of Physical Chemistry B, 125(49), 13552-13564. doi:10.1021/acs.jpcb.1c08601.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Article.pdf (Publisher version), 5MB
Name:
Article.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Robalo, João Ramiro1, Author              
Mendes de Oliveira, Denilson, Author
Ben-Amotz, Dor, Author
Vila Verde, Ana, Author
Affiliations:
1Ana Vila Verde, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2205638              

Content

show
hide
Free keywords: -
 Abstract: The interplay between the local hydration shell structure, the length of hydrophobic solutes, and their identity (perfluorinated or not) remains poorly understood. We address this issue by combining Raman–multivariate curve resolution (Raman-MCR) spectroscopy, simulation, and quantum-mechanical calculations to quantify the thermodynamics and the first principle interactions behind the formation of defects in the hydration shell of alkyl–diol and perfluoroalkyl–diol chains. The hydration shell of the fluorinated diols contains substantially more defects than that of the nonfluorinated diols; these defects are water hydroxy groups that do not donate hydrogen bonds and which either point to the solute (radial-dangling OH) or not (nonradial-dangling OH). The number of radial-dangling OH defects per carbon decreases for longer chains and toward the interior of the fluorinated diols, mainly due to less favorable electrostatics and exchange interactions; nonradial-dangling OH defects per carbon increase with chain length. In contrast, the hydration shell of the nonfluorinated diols only contains radial-dangling defects, which become more abundant toward the center of the chain and for larger chains, predominantly because of more favorable dispersion interactions. These results have implications for how the folding of macromolecules, ligand binding to biomacromolecules, and chemical reactions at water–oil interfaces could be modified through the introduction of fluorinated groups or solvents.

Details

show
hide
Language(s): eng - English
 Dates: 2021-12-072021
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1021/acs.jpcb.1c08601
Other: OA-Liste?
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physical Chemistry B
  Abbreviation : J. Phys. Chem. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Chemical Society
Pages: - Volume / Issue: 125 (49) Sequence Number: - Start / End Page: 13552 - 13564 Identifier: ISSN: 1520-6106