English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states

Marco, B. D., Zdziarski, A. A., Ponti, G., Migliori, G., Belloni, T. M., Otero, A. S., et al. (2021). The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states. Astronomy and Astrophysics, 654: A14. doi:10.1051/0004-6361/202140567.

Item is

Files

show Files
hide Files
:
The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Marco, B. De, Author
Zdziarski, A. A., Author
Ponti, G.1, Author           
Migliori, G., Author
Belloni, T. M., Author
Otero, A. Segovia, Author
Dziełak, M. A., Author
Lai, E. V., Author
Affiliations:
1High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society, ou_159890              

Content

show
hide
Free keywords: -
 Abstract: Context. We present a systematic X-ray spectral-timing study of the recently discovered, exceptionally bright black hole X-ray binary system MAXI J1820+070. Our analysis focuses on the first part of the 2018 outburst, covering the rise throughout the hard state, the bright hard and hard-intermediate states, and the transition to the soft-intermediate state.
Aims. We address the issue of constraining the geometry of the innermost accretion flow and its evolution throughout an outburst.
Methods. We employed two independent X-ray spectral-timing methods applied to archival NICER data of MAXI J1820+070. We first identified and tracked the evolution of a characteristic frequency of soft X-ray thermal reverberation lags (lags of the thermally reprocessed disc emission after the irradiation of variable hard X-ray photons). This frequency is sensitive to intrinsic changes in the relative distance between the X-ray source and the disc. Then, we studied the spectral evolution of the quasi-thermal component responsible for the observed thermal reverberation lags. We did so by analysing high-frequency covariance spectra, which single out spectral components that vary in a linearly correlated way on the shortest sampled timescales and are thus produced in the innermost regions of the accretion flow.
Results. The frequency of thermal reverberation lags steadily increases throughout most of the outburst, implying that the relative distance between the X-ray source and the disc decreases as the source softens. However, near transition this evolution breaks, showing a sudden increase (decrease) in lag amplitude (frequency). On the other hand, the temperature of the quasi-thermal component in covariance spectra, due to disc irradiation and responsible for the observed soft reverberation lags, consistently increases throughout all the analysed observations.
Conclusions. This study proposes an alternative interpretation to the recently proposed contracting corona scenario. Assuming a constant height for the X-ray source, the steady increase in the reverberation lag frequency and in the irradiated disc temperature in high-frequency covariance spectra can be explained in terms of a decrease in the disc inner radius as the source softens. The behaviour of thermal reverberation lags near transition might be related to the relativistic plasma ejections detected at radio wavelengths, suggesting a causal connection between the two phenomena. Throughout most of the hard and hard-intermediate state, the disc is consistent with being truncated (with an inner radius Rin ≳ 10 Rg), reaching close to the innermost stable circular orbit only near transition.

Details

show
hide
Language(s): eng - English
 Dates: 2021-10-01
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1051/0004-6361/202140567
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: France : EDP Sciences S A
Pages: - Volume / Issue: 654 Sequence Number: A14 Start / End Page: - Identifier: ISSN: 1432-0746
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1