Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostructures

Krause, R., Aeschlimann, S., Chavez Cervantes, M., Perea-Causin, R., Brem, S., Malic, E., et al. (2021). Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostructures. Physical Review Letters, 127(27): 276401. doi:10.1103/PhysRevLett.127.276401.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
PhysRevLett.127.276401.pdf (Verlagsversion), 2MB
Name:
PhysRevLett.127.276401.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
© American Physical Society
Lizenz:
-
:
SupMat.pdf (Ergänzendes Material), 4MB
Name:
SupMat.pdf
Beschreibung:
Supplemental Material: sample growth and characterization tr-ARPES setup and data analysis detailed comparison with literature description of microscopic model
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/2012.09268 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.1103/PhysRevLett.127.276401 (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Krause, R.1, 2, Autor           
Aeschlimann, S.1, 2, Autor           
Chavez Cervantes, M.2, Autor           
Perea-Causin, R.3, Autor
Brem, S.4, Autor
Malic, E.3, Autor
Forti, S.5, Autor
Fabbri, F.5, 6, 7, Autor
Coletti, C.5, 7, Autor
Gierz, I.1, Autor
Affiliations:
1University of Regensburg, Institute for Experimental and Applied Physics, ou_persistent22              
2Ultrafast Electron Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_1938295              
3Department of Physics, Chalmers University of Technology, ou_persistent22              
4Department of Physics, Philipps-Universität Marburg, ou_persistent22              
5Center for Nanotechnology Innovation at NEST, Istituto Italiano di Tecnologia, ou_persistent22              
6NEST, Istituto Nanoscienze, CNR and Scuola Normale Superiore, ou_persistent22              
7Graphene Labs, Istituto Italiano di Tecnologia, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Van der Waals heterostructures show many intriguing phenomena including ultrafast charge separation following strong excitonic absorption in the visible spectral range. However, despite the enormous potential for future applications in the field of optoelectronics, the underlying microscopic mechanism remains controversial. Here we use time- and angle-resolved photoemission spectroscopy combined with microscopic many-particle theory to reveal the relevant microscopic charge transfer channels in epitaxial WS2/graphene heterostructures. We find that the timescale for efficient ultrafast charge separation in the material is determined by direct tunneling at those points in the Brillouin zone where WS2 and graphene bands cross, while the lifetime of the charge separated transient state is set by defect-assisted tunneling through localized sulphur vacancies. The subtle interplay of intrinsic and defect-related charge transfer channels revealed in the present work can be exploited for the design of highly efficient light harvesting and detecting devices.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-09-292021-05-032021-11-122021-12-272021-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2012.09268
DOI: 10.1103/PhysRevLett.127.276401
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : 785219
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : -
Grant ID : 881603
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : We thank S. Latini, L. Xian, A. Rubio, and S. Refaely-Abramson for many fruitful discussions. This work was supported by the Deutsche Forschungsgemeinschaft through SFB 925, SFB 1083 and SFB 1277, by the European Unions Horizon 2020 research and innovation program under Grant Agreements No. 785219 and No. 881603, and by the Swedish Research Council (VR, Project No. 2018-00734). The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at C3SE partially funded by the Swedish Research Council through Grant Agreement No. 2016-07213. R. P. C. acknowledges funding from the Excellence Initiative Nano (Chalmers) under the Excellence Ph.D. programme.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review Letters
  Kurztitel : Phys. Rev. Lett.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Physical Society
Seiten: - Band / Heft: 127 (27) Artikelnummer: 276401 Start- / Endseite: - Identifikator: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1