English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Euclid: Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data

Martinelli, M., Martins, C. J. A. P., Nesseris, S., Tutusaus, I., Blanchard, A., Camera, S., et al. (2021). Euclid: Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data. Astronomy and Astrophysics, 654: A148. doi:10.1051/0004-6361/202141353.

Item is

Files

show Files
hide Files
:
Euclid Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data.pdf (Any fulltext), 855KB
 
File Permalink:
-
Name:
Euclid Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Martinelli, M., Author
Martins, C. J. A. P., Author
Nesseris, S., Author
Tutusaus, I., Author
Blanchard, A., Author
Camera, S., Author
Carbone, C., Author
Casas, S., Author
Pettorino, V., Author
Sakr, Z., Author
Yankelevich, V., Author
Sapone, D., Author
Amara, A., Author
Auricchio, N., Author
Bodendorf, C.1, Author           
Bonino, D., Author
Branchini, E., Author
Capobianco, V., Author
Carretero, J., Author
Castellano, M., Author
Cavuoti, S., AuthorCimatti, A., AuthorCledassou, R., AuthorCorcione, L., AuthorCostille, A., AuthorDegaudenzi, H., AuthorDouspis, M., AuthorDubath, F., AuthorDusini, S., AuthorEalet, A., AuthorFerriol, S., AuthorFrailis, M., AuthorFranceschi, E., AuthorGarilli, B., AuthorGiocoli, C., AuthorGrazian, A., AuthorGrupp, F.1, Author           Haugan, S. V. H., AuthorHolmes, W., AuthorHormuth, F., AuthorJahnke, K., AuthorKiessling, A., AuthorKümmel, M., AuthorKunz, M., AuthorKurki-Suonio, H., AuthorLigori, S., AuthorLilje, P. B., AuthorLloro, I., AuthorMansutti, O., AuthorMarggraf, O., AuthorMarkovic, K., AuthorMassey, R., AuthorMeneghetti, M., AuthorMeylan, G., AuthorMoscardini, L., AuthorNiemi, S. M., AuthorPadilla, C., AuthorPaltani, S., AuthorPasian, F., AuthorPedersen, K., AuthorPires, S., AuthorPoncet, M., AuthorPopa, L., AuthorRaison, F.1, Author           Rebolo, R., AuthorRhodes, J., AuthorRoncarelli, M., AuthorRossetti, E., AuthorSaglia, R.1, Author           Secroun, A., AuthorSeidel, G., AuthorSerrano, S., AuthorSirignano, C., AuthorSirri, G., AuthorStarck, J.-L., AuthorTavagnacco, D., AuthorTaylor, A. N., AuthorTereno, I., AuthorToledo-Moreo, R., AuthorValenziano, L., AuthorWang, Y., AuthorZamorani, G., AuthorZoubian, J., AuthorBaldi, M., AuthorBrescia, M., AuthorCongedo, G., AuthorConversi, L., AuthorCopin, Y., AuthorFabbian, G., AuthorFarinelli, R., AuthorMedinaceli, E., AuthorMei, S., AuthorPolenta, G., AuthorRomelli, E., AuthorVassallo, T., Author more..
Affiliations:
1Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159895              

Content

show
hide
Free keywords: -
 Abstract: In physically realistic, scalar-field-based dynamical dark energy models (including, e.g., quintessence), one naturally expects the scalar field to couple to the rest of the model’s degrees of freedom. In particular, a coupling to the electromagnetic sector leads to a time (redshift) dependence in the fine-structure constant and a violation of the weak equivalence principle. Here we extend the previous Euclid forecast constraints on dark energy models to this enlarged (but physically more realistic) parameter space, and forecast how well Euclid, together with high-resolution spectroscopic data and local experiments, can constrain these models. Our analysis combines simulated Euclid data products with astrophysical measurements of the fine-structure constant, α, and local experimental constraints, and it includes both parametric and non-parametric methods. For the astrophysical measurements of α, we consider both the currently available data and a simulated dataset representative of Extremely Large Telescope measurements that are expected to be available in the 2030s. Our parametric analysis shows that in the latter case, the inclusion of astrophysical and local data improves the Euclid dark energy figure of merit by between 8% and 26%, depending on the correct fiducial model, with the improvements being larger in the null case where the fiducial coupling to the electromagnetic sector is vanishing. These improvements would be smaller with the current astrophysical data. Moreover, we illustrate how a genetic algorithms based reconstruction provides a null test for the presence of the coupling. Our results highlight the importance of complementing surveys like Euclid with external data products, in order to accurately test the wider parameter spaces of physically motivated paradigms.

Details

show
hide
Language(s): eng - English
 Dates: 2021-10-26
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1051/0004-6361/202141353
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: France : EDP Sciences S A
Pages: - Volume / Issue: 654 Sequence Number: A148 Start / End Page: - Identifier: ISSN: 1432-0746
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1