English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Nanolayer laser absorber for femtoliter chemistry in polymer reactors

Zhang, J., Liu, Y., Ronneberger, S., Tarakina, N. V., Merbouh, N., & Löffler, F. F. (2022). Nanolayer laser absorber for femtoliter chemistry in polymer reactors. Advanced Materials, 34(8): 2108493. doi:10.1002/adma.202108493.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 3MB
Name:
Article.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Zhang, Junfang1, Author           
Liu, Yuxin1, Author                 
Ronneberger, Sebastian1, Author           
Tarakina, Nadezda V.2, Author           
Merbouh, Nabyl, Author
Löffler, Felix F.1, Author           
Affiliations:
1Felix Löffler, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2385692              
2Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2522693              

Content

show
hide
Free keywords: femtoliter chemistry; hematite film; laser-induced forward transfer; nano-absorber; solid phase synthesis
 Abstract: Laser-induced forward transfer (LIFT) has the potential to be an alternative approach to atomic force microscopy based scanning probe lithography techniques, which have limitations in high-speed and large-scale patterning. However, traditional donor slides limit the resolution and chemical flexibility of LIFT. Here, we propose a hematite nanolayer absorber for donor slides to achieve high-resolution transfers down to sub-femtoliters. Being wettable by both aqueous and organic solvents, this new donor significantly increases the chemical scope for the LIFT process. For parallel amino acid coupling reactions, the patterning resolution can now be increased more than five times (>111,000 spots/cm2 for hematite donor versus 20,000 spots/cm2 for standard polyimide donor) with even faster scanning (2 versus 6 ms per spot). Due to the increased chemical flexibility, we could explore other types of reactions inside ultrasmall polymer reactors: copper (I) catalyzed click chemistry and laser-driven oxidation of a tetrahydroisoquinoline derivative, suggesting the potential of LIFT for both deposition of chemicals and laser-driven photochemical synthesis in femtoliters within milliseconds. Since the hematite shows no damage after typical laser transfer, donors can be regenerated by heat treatment. These findings will transform the LIFT process into an automatable, precise, and highly efficient technology for high-throughput femtoliter chemistry.

Details

show
hide
Language(s): eng - English
 Dates: 2021-12-092022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/adma.202108493
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advanced Materials
  Other : Adv. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 34 (8) Sequence Number: 2108493 Start / End Page: - Identifier: ISSN: 0935-9648