English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Non-separating immersions of spheres and Bing houses

Freedman, M., & Nguễyn-Phan, T. T. (2021). Non-separating immersions of spheres and Bing houses. Mathematical Research Letters, 28(4), 1085-1106. doi:10.4310/MRL.2021.v28.n4.a5.

Item is

Files

show Files
hide Files
:
arXiv:1911.08858.pdf (Preprint), 4MB
 
File Permalink:
-
Name:
arXiv:1911.08858.pdf
Description:
File downloaded from arXiv at 2022-01-05 14:49
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Freedman_Phan_Non-separating immersions of spheres and Bing houses_2021.pdf (Publisher version), 209KB
 
File Permalink:
-
Name:
Freedman_Phan_Non-separating immersions of spheres and Bing houses_2021.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Mathematics, MBMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
MPIM Preprint series 2020-3.pdf (Preprint), 4MB
Name:
MPIM Preprint series 2020-3.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://dx.doi.org/10.4310/MRL.2021.v28.n4.a5 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Freedman, Michael, Author
Nguễyn-Phan, T. Tâm1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Geometric Topology, Differential Geometry
 Abstract: n all dimensions n≥4 we construct explicit non-separating, locally flat, PL immersions of Sn−1↬Sn. In fact, the complement of these immersions is diffeomorphic to Rn. These generalize the famous “house with two rooms” or “Bing house” which is an immersion S2↬R3⊂S3.

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Issued
 Pages: 22
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1911.08858
DOI: 10.4310/MRL.2021.v28.n4.a5
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Mathematical Research Letters
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: International Press
Pages: - Volume / Issue: 28 (4) Sequence Number: - Start / End Page: 1085 - 1106 Identifier: -