hide
Free keywords:
immunocytochemistry
Rdl
insect brain
olfaction
inhibition
GABA
nicotinic acetylcholine-receptors
drosophila-melanogaster
preferential
expression
neuronal architecture
honeybee
brain
body
immunoreactivity
subcompartments
connections
Neurosciences & Neurology
Zoology
Abstract:
Antibodies against the Drosophila gamma-aminobutyric acid (GABA) receptor subunit RDL were used to investigate the significance of inhibitory inputs to the mushroom bodies in the blowfly (Calliphora erythrocephala) brain. The pedunculus and the lobes of the mushroom body, which mainly consist of Kenyon cell fibers, revealed strong immunoreactivity against RDL. Pedunculi, alpha- and beta-lobe show characteristic unstained core structures with concentric labeling along the neuropile axis. The gamma-lobes in contrast exhibit a compartmentalized RDL-immunoreactive pattern. These data suggest an important role of GABAergic inhibition in the pedunculus and the lobes of insect mushroom bodies. It is most likely that the RDL-immunoreactivity in the mushroom bodies is closely related to Kenyon cell fibers suggesting that Kenyon cells are an inhomogeneous class of neurons, only part of which receive inhibitory GABAergic input from extrinsic elements. GABAergic inhibition, therefore, may play a substantial role in the process of learning and memory formation in the insect mushroom bodies. (C) 1997 Wiley-Liss, Inc.