English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ultrafast Demagnetization of Iron Induced by Optical versus Terahertz Pulses

Chekhov, A., Behovits, Y., Heitz, J., Denker, C., Reiss, D., Wolf, M., et al. (2021). Ultrafast Demagnetization of Iron Induced by Optical versus Terahertz Pulses. Physical Review X, 11(4), 041055-1-041055-16. doi:10.1103/PhysRevX.11.041055.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Chekhov, Alexander1, 2, Author              
Behovits, Yannic1, 2, Author              
Heitz, Julius1, 2, Author              
Denker, C.3, Author
Reiss, D.A.1, Author
Wolf, Martin2, Author              
Weinelt, M.1, Author
Brouwer, P.W.1, Author
Münzenberg, M.3, Author
Kampfrath, Tobias1, 2, Author              
Affiliations:
1Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany, ou_persistent22              
2Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
3Institut für Physik, Universität Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We study ultrafast magnetization quenching of ferromagnetic iron following excitation by an optical versus a terahertz pump pulse. While the optical pump (photon energy of 3.1 eV) induces a strongly nonthermal electron distribution, terahertz excitation (4.1 meV) results in a quasithermal perturbation of the electron population. The pump-induced spin and electron dynamics are interrogated by the magneto-optic Kerr effect (MOKE). A deconvolution procedure allows us to push the time resolution down to 130 fs, even though the driving terahertz pulse is about 500 fs long. Remarkably, the MOKE signals exhibit an almost identical time evolution for both optical and terahertz pump pulses, despite the 3 orders of magnitude different number of excited electrons. We are able to quantitatively explain our results using a nonthermal model based on quasielastic spin-flip scattering. It shows that, in the small-perturbation limit, the rate of demagnetization of a metallic ferromagnet is proportional to the excess energy of the electrons, independent of the precise shape of their distribution. Our results reveal that, for simple metallic ferromagnets, the dynamics of ultrafast demagnetization and of the closely related terahertz spin transport do not depend on the pump photon energy.

Details

show
hide
Language(s): eng - English
 Dates: 2021-09-152021-04-292021-10-042021-12-20
 Publication Status: Published in print
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevX.11.041055
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review X
  Abbreviation : Phys. Rev. X
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : American Physical Society
Pages: 16 Volume / Issue: 11 (4) Sequence Number: - Start / End Page: 041055-1 - 041055-16 Identifier: Other: 2160-3308
CoNE: https://pure.mpg.de/cone/journals/resource/2160-3308