Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Probing the Energy Conversion Pathways between Light, Carriers, and Lattice in Real Time with Attosecond Core-Level Spectroscopy

Sidiropoulos, T., Di Palo, N., Rivas, D., Severino, S., Reduzzi, M., Nandy, B., et al. (2021). Probing the Energy Conversion Pathways between Light, Carriers, and Lattice in Real Time with Attosecond Core-Level Spectroscopy. Physical Review X, 11(4): 041060. doi:10.1103/PhysRevX.11.041060.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
PhysRevX.11.041060.pdf (Verlagsversion), 3MB
Name:
PhysRevX.11.041060.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2021
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sidiropoulos, T.P.H.1, Autor
Di Palo, N.1, Autor
Rivas, D.E.1, 2, Autor
Severino, S.1, Autor
Reduzzi, M.1, Autor
Nandy, B.1, Autor
Bauerhenne, B.3, Autor
Krylow, S.3, Autor
Vasileiadis, Thomas4, Autor           
Danz, T.5, Autor
Elliott, P.6, 7, Autor
Sharma, S.6, Autor
Derwhurst, K.7, Autor
Ropers, C.5, Autor
Joly, Y.8, Autor
Garcia, K.M.E.3, Autor
Wolf, Martin4, Autor           
Ernstorfer, Ralph4, Autor           
Biegert, J.1, 9, Autor
Affiliations:
1ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain, ou_persistent22              
2European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany, ou_persistent22              
3Theoretische Physik, FB-10, Universität Kassel, 34132 Kassel, Germany, ou_persistent22              
4Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
54th Physical Institute-Solids and Nanostructures, University of Göttingen, 37077 Göttingen, Germany, ou_persistent22              
6Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany, ou_persistent22              
7Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany, ou_persistent22              
8Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France, ou_persistent22              
9ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Detection of the energy conversion pathways between photons, charge carriers, and the lattice is of fundamental importance to understand fundamental physics and to advance materials and devices. Yet, such insight remains incomplete due to experimental challenges in disentangling the various signatures on overlapping timescales. Here, we show that attosecond core-level x-ray absorption fine-structure spectroscopy (XANES) meets this challenge by providing an unambiguous and simultaneous view on the temporal evolution of the photon-carrier-phonon system. We provide surprising new results by applying the method to graphite, a seemingly well-studied system whose investigation is complicated by a variety of mechanisms occurring across a wide range of temporal scales. The simultaneous real-time measurement of electrons and holes reveals disparate scattering mechanisms for infrared excitation close to the Fermi energy. We find that ultrafast dephasing of the coherent carrier dynamics is governed by impact excitation (IE) for electrons, while holes exhibit a switchover from impact excitation to Auger heating (AH) already during the 11-fs duration of the infrared light field. We attribute this switchover to the limited scattering phase space in the n-doped material. We further elucidate the excitation mechanisms of strongly coupled optical phonons (SCOPs). The coherent excitation of both SCOPs is nondisplacive and is explained by the strong electron-phonon scattering, i.e., via a seemingly incoherent process. We identify the A1 phonon as the dominating channel for dissipation of electronic coherence. Moreover, unobserved in graphite, we find high-frequency oscillations up to 90 THz, which arise from the modulation of the electronic density of states by the atomic displacements along the E2g and A1 modes. These measurements establish the utility of core-level XANES with attosecond temporal resolution to achieve an unambiguous and simultaneous view on the temporal evolution of the photon-carrier-phonon system with surprising new results even for a seemingly well-studied system like graphite. While the graphite measurement was conducted around the K edge of carbon, adapting the methodology to other materials only requires spectra coverage of the respective elemental edge of the material’s constituent. This flexibility makes our methodology widely applicable to detect and distinguish the various dynamic contributions to the flow of energy inside materials on their native timescales.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-09-022021-06-092021-10-122021-12-27
 Publikationsstatus: Online veröffentlicht
 Seiten: 15
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1103/PhysRevX.11.041060
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review X
  Kurztitel : Phys. Rev. X
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : American Physical Society
Seiten: 15 Band / Heft: 11 (4) Artikelnummer: 041060 Start- / Endseite: - Identifikator: Anderer: 2160-3308
CoNE: https://pure.mpg.de/cone/journals/resource/2160-3308