English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Stimulation of the left dorsolateral prefrontal cortex with slow rTMS enhances verbal memory formation

van der Plas, M., Braun, V., Stauch, B. J., & Hanslmayr, S. (2021). Stimulation of the left dorsolateral prefrontal cortex with slow rTMS enhances verbal memory formation. PLoS Biology, 19(9): e3001363. doi:10.1371/journal.pbio.3001363.

Item is

Files

show Files
hide Files
:
vanDerPlas_2021_StimulationOfTheLeft.pdf (Publisher version), 3MB
Name:
vanDerPlas_2021_StimulationOfTheLeft.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
Copyright: © 2021 van der Plas et al.

Locators

show
hide
Description:
-
OA-Status:
Gold

Creators

show
hide
 Creators:
van der Plas, Mircea, Author
Braun, Verena, Author
Stauch, Benjamin J.1, 2, Author
Hanslmayr, Simon, Author
Affiliations:
1Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt, DE, ou_2074314              
2Fries Lab, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, DE, ou_3381216              

Content

show
hide
Free keywords: -
 Abstract: Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. We here present an incidental finding from a simultaneous EEG-TMS experiment as well as a replication of this unexpected effect. Our results reveal that stimulating the left dorsolateral prefrontal cortex (DLPFC) with slow repetitive transcranial magnetic stimulation (rTMS) leads to enhanced word memory performance. A total of 40 healthy human participants engaged in a list learning paradigm. Half of the participants (N = 20) received 1 Hz rTMS to the left DLPFC, while the other half (N = 20) received 1 Hz rTMS to the vertex and served as a control group. Participants receiving left DLPFC stimulation demonstrated enhanced memory performance compared to the control group. This effect was replicated in a within-subjects experiment where 24 participants received 1 Hz rTMS to the left DLPFC and vertex. In this second experiment, DLPFC stimulation also induced better memory performance compared to vertex stimulation. In addition to these behavioural effects, we found that 1 Hz rTMS to DLPFC induced stronger beta power modulation in posterior areas, a state that is known to be beneficial for memory encoding. Further analysis indicated that beta modulations did not have an oscillatory origin. Instead, the observed beta modulations were a result of a spectral tilt, suggesting inhibition of these parietal regions. These results show that applying 1 Hz rTMS to DLPFC, an area involved in episodic memory formation, improves memory performance via modulating neural activity in parietal regions.

Details

show
hide
Language(s): eng - English
 Dates: 2021-09-28
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1371/journal.pbio.3001363
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS Biology
  Other : PLoS Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, California, US : Public Library of Science
Pages: - Volume / Issue: 19 (9) Sequence Number: e3001363 Start / End Page: - Identifier: ISSN: 1544-9173
CoNE: https://pure.mpg.de/cone/journals/resource/111056649444170