English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Criticality enhances the multilevel reliability of stimulus responses in cortical neural networks

Liang, J., & Zhou, C. (2022). Criticality enhances the multilevel reliability of stimulus responses in cortical neural networks. PLoS Computational Biology, 18(1). doi:10.1371/journal.pcbi.1009848.

Item is

Files

show Files

Creators

show
hide
 Creators:
Liang, J1, 2, Author           
Zhou , C, Author
Affiliations:
1Department of Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017467              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features-from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus-evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus-response dynamics of biologically plausible excitation-inhibition (E-I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E-I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes.

Details

show
hide
Language(s):
 Dates: 2022-01
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1371/journal.pcbi.1009848
eDoc: e1009848
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS Computational Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: 27 Volume / Issue: 18 (1) Sequence Number: - Start / End Page: - Identifier: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1